Spring 2023
CMSE/MTH 314 Matrix Algebra with Computational Applications
- Course website
- Section 005 and 006.
-
Instructional Team:
- Instructor: Son Tu – tuson@msu.edu
- TA: Rishabh Sareen – sareenri@msu.edu
- LA: Jared Bloch – blochjar@msu.edu
- LA: Ryan Kunkel – kunkelry@msu.edu
- LA: Dayna Olson – olsonday@msu.edu
-
Lecture:
- Section 005: Hubbard Hall G30 (M-F: 12:40 pm - 14:00 pm).
- Section 006: Hubbard Hall G30 (M-F: 14:40 pm - 16:00 pm).
-
Getting help:
- Piazza
- Help Room: Zoom (link TBD)
- MSU Counseling Center
- Student Resources
- Resource Center for Persons with Disabilities
Materials
All materials are hosted on D2L.
Table of contents
- CMSE/MTH 314 Matrix Algebra with Computational Applications
- Materials
- Table of contents
- Some extra notes
Some extra notes
Slicing arrays
We can use v[start:end:step]
to slide an array.
It can be used with python list
, tuple
or numpy.ndarray
(vectors created by calling np.arrray([1,21,3])
for example). Read more at NumPy Array Slicing.
import numpy as np v = np.array([1, 2, 3, 4, 5]) type(v) >>> numpy.ndarray v[0::] # select all indices, defaut step 1 >>> array([1, 2, 3, 4, 5]) v[0:-1:] # select all indices except the last one >>> array([1, 2, 3, 4]) v[0:3:] # select only indices 0, 1, 2 >>> array([1, 2, 3]) v[0:3:2] # select only indices 0, 2 as the step is 2 >>> array([1, 3])
Numerical error
Avoid using the comparison 1==1.0
or generally a==b
when comparing two scalars. Use np.isclose()
instead.
import numpy as np np.isclose(1, 1.0) >>> True
Creating zeros and ones vectors
-
np.ones
create a vectors with all element as 1 -
np.zeros
create a vectors with all element as 0 -
np.zeros((m, n))
create a numpy array (matrix) of size \( m\times n\) -
Use Python list as follow to create an \(m\times n\) matrix:
[[0 for i in range(n)] for j in range(m)]
np.ones(4) >>> array([1., 1., 1., 1.]) np.zeros(4) >>> array([0., 0., 0., 0.]) np.zeros((2, 3)) >>> array([[0., 0., 0.], [0., 0., 0.]]) [[0 for i in range(n)] for j in range(m)] >>> [[0, 0, 0], [0, 0, 0]]
Solving linear systems
import numpy as np A = np.array([[1, 0, 1], [2, 3, 4], [-1, -3, -3]]) b = np.array([3, 7, -4]) sol = np.linalg.solve(A,b)
Note that one can use np.matrix
instead of np.array
, however the former is deprecated.
Find the reduced echelon form
The Python sympy library has a "reduced row echelon form" (rref
) function that runs a
much more efficient version of the Gauss-Jordan elimination. To use the rref function you
must first convert your matrix into a sympy.Matrix and then run the function. For example,
let's do this for the following matrix:
import sympy as sym M = sym.Matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]]) M M.rref()
In this code, the augmented matrix is \( M = [A|b]\) where
$$ A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 3 & 4 \\ -1 & -3 & -3 \end{pmatrix} , \qquad\text{and}\qquad b = \begin{pmatrix} 3\\ 7\\ -4 \end{pmatrix}. $$
Note that M.rref()
returns a tuple of length 2, the first one is the reduced echelon form, the second one is the tuple if incides of pivots.
import sympy as sym M = sym.Matrix([[1, 0, 1, 3], [2, 3, 4, 7], [-1, -3, -3, -4]]) M M.rref()[0]
This code returns the matrix only, which we use mostly in this course.
Getting the dimensions of arrays/matrix
-
If \(M\) is a \(m\times n\) Python list, or
np.array
A = [[1,2,3],[4,5,6]] len(A) # return 2 len(A[0]) # return 3 B = np.array([[1,2,3],[4,5,6]]) len(B) # return 2 len(B[0]) # return 3
-
If \(M\) is a \(m\times n\)
np.matrix
, the above code gives wrong results. To get a correct answer, simply usenp.array
to convert it before callinglen()
B = np.array([[1,2,3],[4,5,6]]) len(B) # return 2 len(B[0]) # return 1 - wrong # fix len(np.array(B[0])) # return 3
© 2016-2025 Son N. T. Tu. Powered by Ark. Last updated: January 03, 2025.