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1. Consider f(x,y) = 1√
y−x2−1

, what is the domain and the range of f?

2. Consider the parametric surface

r(u, v) = (u2 + 1, v3 + 1,u+ v).

Find the normal vector at (2, 2, 0) and the tangent plane at that point to the surface.

3. Find the absolute maximum of f(x,y) = x+ y− xy on the closed triangular region
with vertices (0, 0), (0, 2) and (4, 0).

4. Let f(x,y) = x
x+y , find the linearization of f at (2, 1). Use your answer to approximate

f(2.2, 0.9). What is the minimum rate of change of f at (2, 1)?

5. Find the work done by the force F = (y,−xy) along the straight-line segment from
(0, 0) to (3, 1).

6. Let C be the curve whose parametrization is given by the vector equation r(t) = (2t, t),
0 6 t 6 1. Find ∫

C
(xy+ y) ds.

7. Let C be the union of the line segments from P(2, 0,π) to R(0, 0, 0) and from R to
Q(1, 1,π/2). Evaluate∫

C
(2x+ 5y2z) dx+ (10xyz− 3e3y cos z) dy+ (5xy2 + e3y sin z) dz

8. Find the value of ∂z
∂x , ∂z∂y at the point (1, 1, 1) if z as a function of x and y is defined by

the equation z3 − xy+ yz+ y3 − 2 = 0.

9. Use Lagrange multipliers to find the maximum and minimum values of the function
subject to the given constraint

f(x,y) = 3x+ y, x2 + y2 = 10.

Write down the values of possible λ.

10. Let z = f(x,y), where f is differentiable, and x = g(t) and y = h(t). Suppose that
g(3) = 2, h(3) = 7, g ′(3) = 5, h ′(3) = −4, fx(2, 7) = 6 and fy(2, 7) = −8. Find dz

dt when
t = 3.



11. Consider the function f(x,y) = x2+ xy+y2 at the point (−1, 1). In what direction does
f decrease most rapidly?

12. True of False? fxy = ∂2f
∂x∂y

13. True of False? Dkf(x,y, z) = fz(x,yz)?

14. True of False? If f has a local minimum at (1, 2) and f is differentiable at (1, 2) then
∇f(1, 2) = 0.

15. True of False? If f(x,y) has two local maxima, then f must have at least one local
minimum?

16. True of False? If f has continuous partial derivatives on and C is any circle then∫
C
∇f · dr = 0.

17. Which of the following vector field plots could be F = (xy,−y)?


