1 Vector Fields

1.1 A Vector at Every Point - Video Before Class

Objective(s):

- Sketch a given vector field
- Recognize that vector fields fill in the missing gaps

Definition(s) 1.1.

(a) Le	t D be a set in \mathbb{R}^2 (plane region). A	is a function that assigns to each
ро	int (x, y) in D a two-dimensional vector	
(b) Le	et E be a set in \mathbb{R}^3 . A	_ is a function that assigns to each point (x, y, z) in
E	a three-dimensional vector	

Let's practice by sketching a vector field.

Example 1.2. Sketch the vector field: $\mathbf{F}(x, y) = \langle -y, x \rangle$ on the graph below.

Vector's calculus

Concerning functions where outputs are vectors
$$(\mathbb{R}^{2} \text{ or } (\mathbb{R}^{3})$$

vector fields
 $F(x,y) = (y,x) : \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
or
 $F(x,y) = (x, q^{2}, z+1) : \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
or
 $P(x,y) = (x, y, 1) : \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$
or (prometrization)
 $r(t) = (ort, qut, 1) \mathbb{R} \rightarrow \mathbb{R}^{3}$
A vector field carbe generated by gradient of a scalar fuctor
 $(butput \operatorname{in} \mathbb{R}^{4})$
 $Ex = f(x,y) = x^{2} + y^{2}$
 $\nabla f(x,y) = (2x, 2y)$ is a vector field
 $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$
 $ex : f(x,y,z) = x$
 $\nabla f(x,y) = (2x, 2y)$ is a vector field $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
Conservative vector field:
 F is coverable if $F = \nabla f$ for some scalar f
 $(f is the potential of f)$

Example 1.4. Which of the vector field describes the plot to the right?

C: < x, x+y> is the answer.

Example 1.5. Find the gradient vector field of $f(x, y) = 2xy + 3x - e^{-xy}$

$$F = \nabla f(x_{1Y}) = \left(2y + 3 - e^{-xy}(-y), 2x - e^{-xy}(-x)\right)$$

$$F(x_{1Y}) = \left(2y + 3 + ye^{-xy}, 2x + xe^{-xy}\right)$$

Example 1.6. For each of the following functions, draw level curves f(x, y) = k for the indicated values of k. Then compute the gradient vector field, and sketch it at one or two points on each level curve.

(a) $f(x,y) = \frac{x^2}{4} + \frac{y^2}{9}; \ k = 1, 2, 4$

$$\nabla f(x,y) = \left(\frac{2x}{4}, \frac{2y}{9}\right) = \left(\frac{x}{2}, \frac{2y}{9}\right)$$

$$af(0,3) : \left(\frac{x}{2}, \frac{2y}{9}\right) = \left(0, \frac{6}{5}\right)$$

$$af(2,0) : \left(\frac{x}{2}, \frac{2y}{9}\right) = \left(1,0\right)$$

Looking ahead it will be important to be able to answer the following questions.

Example 1.7. Consider the vector field \mathbf{F} to the right. Suppose particles are moving from P to Q along the curve.

A. **F** is helping push particles from P to Q along the curve C.

B. **F** is making it harder for particles to move from P to Q along the curve C.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $						9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\searrow	\sum_{i}	\mathbf{Y}	7	\uparrow	1	Ļ	1	\checkmark	\checkmark	\checkmark	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\searrow	Q	•	7	\uparrow	ł	¥	¥	\checkmark	\checkmark	\checkmark	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	\searrow	\searrow	Ч	7	\checkmark	ł	4	¥	Ľ	K	K	
$ \begin{array}{c} \cdot \cdot$	\searrow	\checkmark	×	ы	4	ł	¥	Ľ	K	K	\checkmark	
$\rightarrow \rightarrow $	\rightarrow	1	>	ĸ	k,	ł	k	ĸ	K	Ł	\leftarrow	
$ \begin{array}{c} \rightarrow \rightarrow & \rightarrow & \gamma \\ \rightarrow \\ \rightarrow & \gamma \\ \rightarrow \\$	\rightarrow						,	,	,	,	$\sim \alpha$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Ľ		,	Î	,	,	,	,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	->	-> (7	শ	Î	7	ĸ	۲ (1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-> ->	+ 7 7	7	, я ,	, 7 7		۲ ۲	к к	K K	77	↓ ↓ ↓	
~ ~ ~ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^	+ + 7 7	+ + 7 7	7 7	ר ד ד	, 7 7 7		۲ ۲ ۲	۲ ۲ ۲	* * * *	イイト	t t t	
	·	ナ オ ア ア			,		ド	۲ ۲ ۲	K K K K	* * * * * *	+	

21

Example 1.8. Consider the vector field \mathbf{F} to the right. Suppose particles are moving from P to Q along the curve.

A. **F** is helping push particles from P to Q along the curve C.

B. F is making it harder for particles to move from P to Q along the curve C.

C. Neither.

/	/	\checkmark	Ļ	¥	ų ≺	/ • *	_ `	ĸ	K	< '	<
	, Ç	-)_•	K	Ł	÷	۲	~	ĸ	ĸ	5	~
× ./	~	2	K	Ł	÷		≮	ĸ	尺	7	7
× ./	~	2	ĸ	k	÷		К	ĸ	$\overline{\nabla}$	7	7
¥-	Ļ		¥	k			٣	ĸ	۲	1	ſ
~ _		-						*	^	1	$\rightarrow x$
+ \	*		<i>د</i> ,	اد ،			স	7	7	1	Ť
*	Ň		v >	k k		÷	7	R	7	7	1
× \.	7		, к	ר ג		÷	7	ĸ	7	7	1
¥ \	Ī	, 	ц.	- <i>k</i>	*	\rightarrow	->	×	7	7	7
r Z		, ``	> `	> -	<i>→</i>	Ļ	\rightarrow	~	\rightarrow	~	7

Example 1.9. Consider the vector field \mathbf{F} to the right. Suppose particles are moving from P to Q along the curve.

A \mathbf{F} is helping push particles from P to Q along the curve C.

B. **F** is making it harder for particles to move from P to Q along the curve C.

C. Neither.

\$ 0 < T

		•		0					
(_	<pre></pre>		$\overset{y}{\uparrow}$	1	7	↑ ↑	↑ ↑	↑ ↑
<u>ب</u>	- 1	< T	<		1	7	• 6	2	1
\leftarrow	←	←	ĸ	ĸ	7	ſ	Î	1	1
⊬	\leftarrow	←	4	R	1	\uparrow	ţ	1	1
\checkmark	K	Ł	÷	ł	*	1	F	1	7
<u>`</u>		- e	<u>+</u>	\downarrow	- 7-	7	7	7	$\checkmark x$
×	4	¥	¥	ł	÷	7	-	7	\nearrow
4	Ļ	\downarrow	7	ы	4	\rightarrow	+	\rightarrow	\nearrow
.]	↓	\uparrow	7	Ľ	\searrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Í	Ţ	7	\mathbf{r}			\rightarrow	•1)	$\rightarrow \longrightarrow$
Ì	Ţ	Ž	7	Ĺ	. `	* _	*	• —	$\rightarrow \longrightarrow$

Line integral
$$rightarrow$$
 integral (sum of all value)
of a function a long a curve C
if C is parametrized by a curve $r(t)$, $t \in [a,b]$
(could be
 $r(t) = (x(t), y(t), z(t))$
then
 $\vec{r}(t) = (x(t), y(t), z(t))$
 $f(t) = (x(t), y(t), z(t))$
 $f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) |\vec{r}'(t)| dt$
 $r(t)$

Example 2.5. Suppose you are a whale who is eating plankton as he/she swims through the ocean. The plankton are spread all throughout the ocean with a function $p(x, y, z) = \boxed{-\frac{1}{\pi}(10 + z + x)}$ You (the whale) are chilling out at (1, 0, -12) are about to swim around in a circular curve; $C: x^2 + y^2 = 1$, z = -12. How many plankton do you eat?

pareauedization:

$$r(t) = (eost, sint, -12) + \in [0, 2\pi]$$

$$r'(t) = \frac{1}{(x'(t)^{2} + (y' + y))^{2} + (z'(t))^{2}} \qquad \begin{cases} x(t) = cost \\ y(t) = sint \\ z(t) = -12 \end{cases}$$

$$= \sqrt{sin^{2}t + cos^{2}t + 0} = 1$$

$$flue \qquad \int -\frac{1}{\pi} (10 + (-12) + cost) \cdot |r'(t)| dt = \int_{0}^{2\pi} \frac{-2 + cost}{-\pi} dt.$$

Example 2.6. A portion of a wall can be parametrized by $\mathbf{r}(t) = \langle 2 \sin t, 2 \cos t \rangle$ $t \in [0, \pi]$

where the height is given by $H(x, y) = xy^2$ meters. Each brick has a cross-sectional area of 100 cm². How many bricks are needed to build this portion of the great wall of china?

Compute the total area first, then 100 to get # bricks.

$$|r'(t)| = \sqrt{(2 \cot t)^2 + (-2 \sin t)^2} = \sqrt{4} = 2$$

$$\int_{0}^{T} (2 \cot t) (2 \cot t)^2 \cdot 2 dt$$
 $u = \cot t \frac{t}{\sqrt{4}} = 2$

$$\int_{0}^{T} \sin t \cot^2 t dt$$
 $u = \cot t \frac{t}{\sqrt{4}} = \frac{1}{\sqrt{4}} = 1$

$$= 16 \int_{-1}^{T} u^2(-du) = 16 \int_{-1}^{1} u^2 du = 16 \frac{u^4}{3} \Big|_{-1}^{1}$$
 $= \frac{16}{3} (1^5 - (-1)^5)$
 $= \frac{32}{3} (m^2)$
 $(-3)^2 = \frac{32}{3} \times 100^2 (cm^3)$
 $= \frac{4}{3} = \frac{100^2}{3} \times 100^2 (cm^3)$

Line integral
Distinguish :
$$ds = Ir'(t)Idt$$

 $dx = x'(t)dt$
 $dy = y'(t)dt$
 $r: [q,6] \rightarrow IR^2 \text{ or } IR^3$

Example

-1. Evaluate
$$\int_{C} y\sin z \, ds$$
 and $\int_{C} y\sin z \, d$
where C is the circular belix
 $x(t) = \cot t$
 $y(t) = \sin t$ $0 \le t \le 2\pi$
 $z(t) = t$
(Proof:
 $ds = \sqrt{(-\sin t)^{2} + (\cot t)^{2} + 1} \, dt = \sqrt{2} \, dt$
 $\int_{C} y\sin z \, ds = \int_{0}^{2\pi} \sin t \sin t \sqrt{2} \, dt$
 $= \sqrt{2} \int_{0}^{2\pi} \sin^{2} t \, dt = \sqrt{2} \int_{0}^{2\pi} \frac{1 - \cos 2t}{2} \, dt$
 $= \sqrt{2} \int_{0}^{2\pi} \sin^{2} t \, dt = \sqrt{2} \int_{0}^{2\pi} \frac{1 - \cos 2t}{2} \, dt$
 $= \sqrt{2} \int_{0}^{2\pi} \sin^{2} t \, dt = \sqrt{2} \int_{0}^{2\pi} \frac{1 - \cos 2t}{2} \, dt$
 $dz = z(t) \, dt = dt$
 $\int_{C} y\sin z \, dz = \int_{0}^{2\pi} \sin t \sin t \, dt = \pi$

2. Evaluate
$$\int_{C} y dx + z dy + x dz$$
 C: line $C_1 : (2,0,0) \rightarrow (3,4,5)$
 $C_2 : (3,4,5) \rightarrow (3,4,0)$
 $C_1 : \vec{r}(t) = (1-t)(2,0,0) + t(3,4,5)$
 $= (2+t_1 + t_1,5t)$ $0 \le t \le 1$

$$\int_{C} y \, dx + 2 \, dy + x \, dz = \int_{0}^{1} 4t \cdot dt + 5t \cdot 4 \, dt + (2+t) \cdot 5 \, dt$$

$$= 24.5$$

$$C_{2}: \vec{r}(t) = (1+t)(3,4,5) + t(3,4,6) \qquad 0 \le t \le \Lambda$$

$$= (3,4,5-5t)$$

$$x(t) = 3 \qquad x'(t+) = 0$$

$$y(t) = 4 \qquad y'(t+) = 0$$

$$g(t+) = 5-5t \qquad z'(t) = -5$$

$$\int_{C} y dx + z dy + x dz = \int_{C}^{1} 3 \cdot (-5) dt = -15$$

$$O \qquad O \qquad O$$

$$fhus \qquad \int_{C} y dx + 2 dy + x dz = 24.5 - 15 = 9.5$$

Tength of anes sum of all values doy the curve $\int_{C} \vec{F} \cdot d\vec{r}^{2} = \int_{C} \vec{F}(t) \cdot \vec{r}'(t) dt$ $\int_{C} dr = \int_{C} \vec{F}(t) \cdot \vec{r}'(t) dt$

Ert.

Example 2.10. A picture of the force field $\mathbf{F}(x, y)$ is given below. Determine if the work in moving a particle along the quarter circle $x^2 + y^2 = 1$ from (0, 1) to (1, 0) is positive or negative using the picture.

Example 2.10 (again). Find the work done by the force field $\mathbf{F}(x, y) = \langle x^2, -xy \rangle$ in moving a particle along the quarter circle $x^2 + y^2 = 1$ from (0,1) to (1,0).

Baramedrize
$$\vec{r}(t) = (\cot t, \sin t)$$

 $\vec{r}'(t) = (-\sin t, \cot t)$
 $t goes fram: $\frac{\pi}{2} \rightarrow 0$
 $(a, L) \rightarrow (1, 0)$
 $\int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{0} (x^{2}, -xy) \cdot \vec{r}'(t) dt$
 $= \int_{\pi/2}^{0} (us^{2}t, -\sinh t \cot t) \cdot (-\sinh t, \cot t) dt$
 $= \int_{\pi/2}^{0} (-\sinh t \cot^{2}t - \sinh t \cot^{2}t) dt$
 $= \int_{\pi/2}^{0} (-\sinh t \cot^{2}t - \sinh t \cot^{2}t) dt$
 $u = \cosh t$
 $du = -\sinh t dt$
 $u = \cosh t$
 1
 $\frac{t}{1} = 2 \int_{0}^{\pi/2} u^{2} du = 2 \frac{u^{3}}{2} \Big|_{0}^{1} = \frac{\pi}{2}$$

Example 2.11.
(a) Evaluating
$$y \, dx + z \, dy + x \, dz$$
 where C consists of the line segment C_1 from $(2,0,0)$ to $(3,4,5)$ followed by the line segment C_2 from $(3,4,5)$ to $(3,4,0)$.
(b) What is the calculation in (a) telling you (in terms of Work)?
(c) $F(x, y_1, z) = (y_1, z_1, x)$
(c) $F(x, y_1, z)$

Example 2.7. Suppose I have a nice spring that seems to follow the curve $\mathbf{r}(t) = \langle 3 \sin t, 3 \cos t, 4t \rangle$ with $t \in [0, 8\pi]$ which happens to have a density function of $\delta(x, y, z) = 10 - x - y g/cm$. How heavy is the spring?

$$\int S(x_{14}(z)) dS = \int \frac{1}{12} (z + 1)^{2} + (y'(t))^{2} + (z'(t))^{2}}{(z + 1)^{2}} dt$$

$$\int S(x_{14}(z)) dS = \int \frac{1}{12} (z + 1)^{2} + (z'(t))^{2} + (z'(t))^{2}}{(y'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}}$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$

$$\int \frac{1}{12} (z + 1)^{2} + z + z^{2} dt$$