MICHIGAN STATE UNIVERSITY MATH 234 – SPRING 2024

LECTURE NOTES

1 Parametric surfaces

- A curve is a function with one parameter \mathbf{r} () = ($x(t)$, $y(t)$, $z(t)$).
	- 1. Example 1. $\mathbf{r}(t) = (\cos t, \sin t, 0), t \in [0, 2\pi]$, this is a circle in *xy*-plane (*z* = 0).
	- 2. Example 2. $\mathbf{r}(t) = (t, 2t, 3t)$, $t \in \mathbb{R}$, this is a line going through $(0, 0, 0)$ with direction $\mathbf{v} = (1, 2, 3)$.
- A parametric surface is a function with two parameter $\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) \in D$.

Example 1. $r(u, v) = (u, v, 1 - u - v), (u, v) \in \mathbb{R}^2$.

- *This is the plane* $x + y + z = u + v + (1 u v) = 1$.
- *We can also view it as*

 $(u, v, 1 - u - v) = (0, 0, 1) + (u, 0, -u) + (0, v, -v) = (0, 0, 1) + u(1, 0, -1) + v(0, 1, -1), \quad (u, v) \in \mathbb{R}^2$. *In this way, the plane is the one containing* (0, 0, 1) *and all vectors in the planes generated by* (1, 0, −1) *and* $(0, 1, -1)$.

Example 2. $r(u, v) = (2 \cos u, v, 2 \sin u), u \in [0, 2\pi], v \in \mathbb{R}$.

• *Look at* $x = 2\cos u$ *,* $y = v$ *,* $z = 2\sin u$ *, thus* $x^2 + z^2 = 4$ *, while* $y \in \mathbb{R}$ *. This is a cylinder.*

Example 3. $r(u, v) = (2 \cos u, v, 2 \sin u), u \in [0, \frac{\pi}{2}], v \in [0, 3].$

- *Look at* $x = 2\cos u, y = v, z = 2\sin u$ *, thus* $x^2 + z^2 = 4$ *, while* $y \in \mathbb{R}$ *. This is a cylinder.*
- *Note the angle θ in the Oxz-plane is π*/4*, thus only a quarter of the Oxz-plane is covered.*

2 Parametrize a surface in *x*, *y*, *z*

Example 4. *Find a parametric equation for* $x^2 + y^2 = 4$, $0 \le z \le 1$ *.*

Proof. We can use polar coordinates $x = 2 \cos \theta$, $y = 2 \sin \theta$ and $0 \le z \le 1$, thus

$$
r(\theta, z) = (2\cos\theta, 2\sin\theta, z)
$$

The domain is $D = \{(\theta, z) : 0 \le \theta \le 2\pi, 0 \le z \le 1\}.$

Example 5. Find a parametric equation for $z = 2\sqrt{x^2 + y^2}$, $0 \le z \le 1$.

Proof 1. We can just use the graph

$$
r(x,y) = (x,y,z) = (x,y,2\sqrt{x^2 + y^2}).
$$

Note the condition $0 \le z \le 1$ means $0 \le 2\sqrt{x^2 + y^2} \le 1$, thus $x^2 + y^2 \le \frac{1}{4}$. Therefore

$$
D = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le \frac{1}{4} \right\}
$$

 \Box

 \Box

Proof 2. We can use polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ and $0 \le z = 2r \le 1$ which means $0 \le r \le \frac{1}{2}$, thus

$$
\mathbf{r}(\theta, z) = (r \cos \theta, r \sin \theta, 2r)
$$

The domain now is

$$
D = \left\{ (\theta, r) : 0 \leq \theta \leq 2\pi, 0 \leq r \leq \frac{1}{2} \right\}.
$$

.

3 Grid

For a parametric surface $r(u, v)$, if we:

- Fix $u = u_0$, run v we get the images as a curvy grid on the surface
- Fix $v = v_0$, run *u* we get the images as a curvy grid on the surface

The two direction at each point $(x_0, y_0, z_0) = r(u_0, v_0)$ form a tangent plane at that point. The two directions here are the partial derivatives

 \mathbf{r}_u and \mathbf{r}_v .

The normal vector of the tangent plane is

$$
\mathbf{n} = r_{\mathbf{u}} \times r_{\mathbf{v}} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{array} \right|
$$

.

Example 6. Find the tangent plane of $x = u^2$, $y = v^2$, $z = u + 2v$ at (1, 1, 3).

Proof.

• Step 1. Solve for (u, v) :

$$
\begin{cases}\n x = u^2 = 1 \\
 y = v^2 = 1 \\
 z = u + 2v = 3\n\end{cases}\n\implies\n\begin{cases}\n u = \pm 1 \\
 v = \pm 1 \\
 u + 2v = 3\n\end{cases}\n\implies\n\begin{cases}\n u = 1 \\
 v = 1 \\
 v = 1\n\end{cases}
$$

• Step 2. Compute the partial derivatives of $\mathbf{r}(u, v) = (u^2, v^2, u + 2v)$

$$
\mathbf{r}_u = (2u, 0, 1) \n\mathbf{r}_v = (0, 2v, 2).
$$

• Step 3. Plug in the value $u = v = 1$ to get

$$
\begin{cases}\mathbf{r}_u = (2,0,1) \\
\mathbf{r}_u = (0,2,2)\n\end{cases}
$$

• Step 4. Compute the normal by cross product

$$
\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & 1 \\ 0 & 2 & 2 \end{vmatrix} = (-2, -4, 4)
$$

• The tangent plane with normal $(-2, -4, -4)$ going through $(1, 1, 3)$ is

$$
-2(x-1)-4(y-1)-4(z-3)=0.
$$

Example 7. *Find the tangent plane of* $x = u^2 + 1$, $y = v^3 + 1$, $z = u + v$ at (5, 2, 3). *Proof.*

• Step 1. Solve for (u, v) :

$$
\begin{cases}\n x = u^2 + 1 = 5 \\
 y = v^3 + 1 = 2 \\
 z = u + v = 3\n\end{cases}\n\implies\n\begin{cases}\n u = 2 \\
 v = 1.\n\end{cases}
$$

• Step 2. Compute the partial derivatives of $\mathbf{r}(u,v) = (u^2 + 1, v^3 + 1, u + v)$

$$
\mathbf{r}_u = (2u, 0, 1)
$$

$$
\mathbf{r}_v = (0, 3v^2, 1).
$$

• Step 3. Plug in the value $u = 2$, $v = 1$ to get

$$
\begin{cases}\mathbf{r}_u = (4,0,1) \\
\mathbf{r}_u = (0,3,1)\n\end{cases}
$$

• Step 4. Compute the normal by cross product

$$
\mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 0 & 1 \\ 0 & 3 & 1 \end{vmatrix} = (-3, -4, 12)
$$

• The tangent plane with normal $(-3, -4, 12)$ going through $(5, 2, 3)$ is

$$
-3(x-5)-4(y-2)+12(z-3)=0.
$$

 \Box

