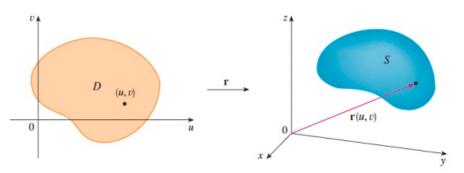
MICHIGAN STATE UNIVERSITY Math 234 – Spring 2024

LECTURE NOTES

1 Parametric surfaces

- A curve is a function with one parameter $\mathbf{r}() = (x(t), y(t), z(t))$.
 - 1. Example 1. $\mathbf{r}(t) = (\cos t, \sin t, 0), t \in [0, 2\pi]$, this is a circle in *xy*-plane (*z* = 0).
 - 2. Example 2. $\mathbf{r}(t) = (t, 2t, 3t), t \in \mathbb{R}$, this is a line going through (0, 0, 0) with direction $\mathbf{v} = (1, 2, 3)$.
- A parametric surface is a function with two parameter $\mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) \in D$.



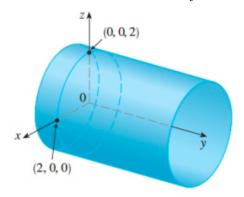
Example 1. $r(u, v) = (u, v, 1 - u - v), (u, v) \in \mathbb{R}^2$.

- This is the plane x + y + z = u + v + (1 u v) = 1.
- We can also view it as

 $(u, v, 1 - u - v) = (0, 0, 1) + (u, 0, -u) + (0, v, -v) = (0, 0, 1) + u(1, 0, -1) + v(0, 1, -1), \quad (u, v) \in \mathbb{R}^2.$ In this way, the plane is the one containing (0, 0, 1) and all vectors in the planes generated by (1, 0, -1) and (0, 1, -1).

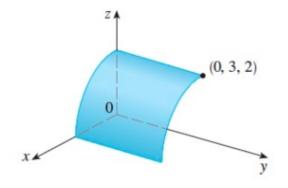
Example 2. $r(u, v) = (2 \cos u, v, 2 \sin u), u \in [0, 2\pi], v \in \mathbb{R}$.

• Look at $x = 2\cos u$, y = v, $z = 2\sin u$, thus $x^2 + z^2 = 4$, while $y \in \mathbb{R}$. This is a cylinder.



Example 3. $r(u, v) = (2 \cos u, v, 2 \sin u), u \in [0, \frac{\pi}{2}], v \in [0, 3].$

- Look at $x = 2\cos u$, y = v, $z = 2\sin u$, thus $x^2 + z^2 = 4$, while $y \in \mathbb{R}$. This is a cylinder.
- Note the angle θ in the Oxz-plane is $\pi/4$, thus only a quarter of the Oxz-plane is covered.



2 Parametrize a surface in *x*, *y*, *z*

Example 4. *Find a parametric equation for* $x^2 + y^2 = 4, 0 \le z \le 1$. *Proof.* We can use polar coordinates $x = 2\cos\theta$, $y = 2\sin\theta$ and $0 \le z \le 1$, thus

$$r(\theta, z) = (2\cos\theta, 2\sin\theta, z)$$

The domain is $D = \{(\theta, z) : 0 \le \theta \le 2\pi, 0 \le z \le 1\}.$

Example 5. Find a parametric equation for $z = 2\sqrt{x^2 + y^2}$, $0 \le z \le 1$.

Proof 1. We can just use the graph

$$r(x,y) = (x,y,z) = (x,y,2\sqrt{x^2 + y^2})$$

Note the condition $0 \le z \le 1$ means $0 \le 2\sqrt{x^2 + y^2} \le 1$, thus $x^2 + y^2 \le \frac{1}{4}$. Therefore

$$D = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 \le \frac{1}{4} \right\}$$

Proof 2. We can use polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ and $0 \le z = 2r \le 1$ which means $0 \le r \le \frac{1}{2}$, thus

$$\mathbf{r}(\theta, z) = (r\cos\theta, r\sin\theta, 2r)$$

The domain now is

$$D = \left\{ (\theta, r) : 0 \le \theta \le 2\pi, 0 \le r \le \frac{1}{2} \right\}.$$

3 Grid

For a parametric surface $\mathbf{r}(u, v)$, if we:

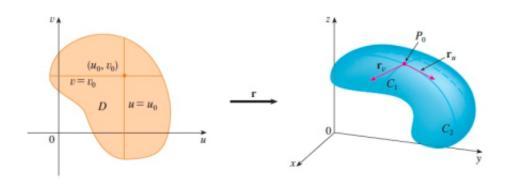
- Fix $u = u_0$, run v we get the images as a curvy grid on the surface
- Fix $v = v_0$, run *u* we get the images as a curvy grid on the surface

The two direction at each point $(x_0, y_0, z_0) = r(u_0, v_0)$ form a tangent plane at that point. The two directions here are the partial derivatives

 \mathbf{r}_u and \mathbf{r}_v .

The normal vector of the tangent plane is

$$\mathbf{n} = r_{\mathbf{u}} \times r_{\mathbf{v}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_u & y_u & z_u \\ x_v & y_v & z_v \end{vmatrix}$$



Example 6. *Find the tangent plane of* $x = u^2$, $y = v^2$, z = u + 2v *at* (1, 1, 3).

Proof.

• Step 1. Solve for (u, v):

$$\begin{cases} x = u^2 = 1 \\ y = v^2 = 1 \\ z = u + 2v = 3 \end{cases} \implies \begin{cases} u = \pm 1 \\ v = \pm 1 \\ u + 2v = 3 \end{cases} \implies \begin{cases} u = 1 \\ v = 1 \\ v = 1 \end{cases}$$

• Step 2. Compute the partial derivatives of $\mathbf{r}(u, v) = (u^2, v^2, u + 2v)$

$$\mathbf{r}_u = (2u, 0, 1)$$

 $\mathbf{r}_v = (0, 2v, 2).$

• Step 3. Plug in the value u = v = 1 to get

$$\begin{cases} \mathbf{r}_u = (2,0,1) \\ \mathbf{r}_u = (0,2,2) \end{cases}$$

• Step 4. Compute the normal by cross product

$$\mathbf{n} = \mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 0 & 1 \\ 0 & 2 & 2 \end{vmatrix} = (-2, -4, 4)$$

• The tangent plane with normal (-2, -4, -4) going through (1, 1, 3) is

$$\boxed{-2(x-1) - 4(y-1) - 4(z-3) = 0}.$$

Example 7. *Find the tangent plane of* $x = u^2 + 1$, $y = v^3 + 1$, z = u + v *at* (5, 2, 3). *Proof.*

• Step 1. Solve for (u, v):

$$\begin{cases} x = u^2 + 1 = 5\\ y = v^3 + 1 = 2\\ z = u + v = 3 \end{cases} \implies \begin{cases} u = 2\\ v = 1. \end{cases}$$

• Step 2. Compute the partial derivatives of $\mathbf{r}(u, v) = (u^2 + 1, v^3 + 1, u + v)$

$$\mathbf{r}_u = (2u, 0, 1)$$

 $\mathbf{r}_v = (0, 3v^2, 1).$

• Step 3. Plug in the value u = 2, v = 1 to get

$$\begin{cases} \mathbf{r}_u = (4,0,1) \\ \mathbf{r}_u = (0,3,1) \end{cases}$$

• Step 4. Compute the normal by cross product

$$\mathbf{n} = \mathbf{r}_{u} \times \mathbf{r}_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 0 & 1 \\ 0 & 3 & 1 \end{vmatrix} = (-3, -4, 12)$$

• The tangent plane with normal (-3, -4, 12) going through (5, 2, 3) is

$$-3(x-5) - 4(y-2) + 12(z-3) = 0.$$