MICHIGAN STATE UNIVERSITY Math 234 – Spring 2024

LECTURE NOTES

1 Cylindrical coordinates

- Cylindrical coordinates represent a point P(x, y, z) in space by ordered triples (r, θ, z) in which (r, θ) is the polar coordinate of (x, y).
- *z* remains unchanged.

• **Example.** Change (x, y, z) = (-1, 1, 1) into cylindrical coordinates.

Proof. $r^2 = x^2 + y^2 = 2$, thus $r = \sqrt{2}$. Then $\tan \theta = \frac{y}{x} = \frac{1}{-1} = -1$, thus $\theta = \frac{3\pi}{4}$. Hence

$$(-1,1,1)\mapsto\left(\sqrt{2},\frac{3\pi}{4},1\right).$$

• **Example.** Change $(\sqrt{2}, 3\pi/4, 2)$ to Cartesian coordinates.

Proof. We have
$$x = r \cos \theta = \sqrt{2} \times \left(-\frac{1}{\sqrt{2}}\right) = -1$$
 and $y = r \sin \theta = \sqrt{2} \times \left(\frac{1}{\sqrt{2}}\right) = 1$. Thus $(\sqrt{2}, 3\pi/4, 2) \mapsto (1, -1, 2).$

2 Spherical coordinates

- (*x*, *y*, *z*) → (ρ, θ, φ), where basically we repeat the polar coordinate first, and the *height z* is tracked via the variable φ, the angle with *Oz*. Note that the order is sometime written as (*r*, φ, θ). Pay attention to the order!
- The relations, still introducing an extra variable *r* as in polar coordinates (it will be very useful)

- If $\phi > \frac{\pi}{2}$ then z < 0, the angle make *P* lies below the *Oxy*-plane.
- **Example.** Convert (1, 1, 0) into spherical coordinate.

Proof. $\rho^2 = x^2 + y^2 + z^2 = 2$, thus $\rho = \sqrt{2}$. Now $z = \rho \cos \phi$ implies $0 = \sqrt{2} \cos \phi$, thus $\phi = \frac{\pi}{2}$. Finally $\tan \theta = \frac{y}{x} = 1$, thus $\theta = \frac{\pi}{4}$ (since x > 0, y > 0). We conclude

$$(1,1,0)\mapsto \left(\sqrt{2},\frac{\pi}{4},\frac{\pi}{2}\right)=(r,\theta,\phi).$$

• **Example.** True/False: Consider the point with spherical coordinates $(\rho, \theta, \phi) = (4, \frac{3\pi}{4}, \frac{5\pi}{7})$. The product of the Cartesian coordinates, *xyz*, is positive.

Proof. **True**. We see that $\phi = \frac{5\pi}{7} > \frac{\pi}{2}$, thus z < 0. Now $\theta = \frac{3\pi}{4}$, thus x > 0, y < 0 (draw a picture). Therefore xyz > 0.

3 Practice

• **Example.** Convert the equation $z = \sqrt{x^2 + y^2}$ into cylindrical coordinates and spherical coordinates.

Proof.

- Cylindrical: z = r.
- Spherical: $\rho \cos \phi = r = \rho \sin \phi$, thus $\tan \phi = 1$, thus $\phi = \frac{\pi}{4}$ is the equation of the cone!

• **Example.** Identify the surface whose equation is $z = 4 - r^2$ in cylindrical coordinate.

Proof. We have $z = 4 - x^2 - y^2$, thus this is a elliptical paraboloid (one term of 1st order, two terms of second order having the same sign).

• **Example.** Convert to *x*, *y*, *z* the surface: $\rho = \sin \phi \cos \phi$.

Proof. We can do

$$(x^{2} + y^{2} + z^{2})^{\frac{3}{2}} = \rho^{3} = (\rho \sin \phi)(\rho \cos \phi) = rz = z\sqrt{x^{2} + y^{2}}.$$

The answer is $(x^2 + y^2 + z^2)^{\frac{3}{2}} = z\sqrt{x^2 + y^2}$.

• **Example.** Identify the surface whose equation is: $\rho = \sin \phi \cos \theta$.

Proof. We can do

$$x^2 + y^2 + z^2 = \rho^2 = (\rho \sin \phi) \cos \theta = r \cos \theta = x$$

Therefore

$$\left(x - \frac{1}{2}\right)^2 + y^2 + z^2 = \frac{1}{4}$$

This is a sphere centered at $(\frac{1}{2}, 0, 0$ with radius $\frac{1}{2}$, this is a *ellipsoid*.