Rate of convergence of vanishing viscosity

Minh Nguyen

Department of Mathematics, Michigan State University

K ロ X K 個 X X B X X B X Y B

 $\mathcal{O}\subseteq\mathcal{O}$

² [Proof](#page-7-0)

³ [Applications and Future](#page-13-0)

目

イロト イ部 トイミト イヨト

Viscosity solutions

- A type of weak solution that is natural for the Hamilton-Jacobi equation introduced by Michael G. Crandall and Pierre-Louis Lions in 1983
- Applications in control theory, physics and economics
- One can obtain the viscosity solution through a procedure known as the vanishing viscosity procedure
- I consider the rate of convergence of this procedure
- This proof was given by Michael G. Crandall and Pierre-Louis Lions in the 80s

イロメ イ押メ イヨメ イヨメ

Problem

Consider the static Hamilton-Jacobi equation $u(x) + H(x, Du(x)) = 0$. The subject of the talk is the viscous Hamilton-Jacobi

$$
u^{\epsilon}(x) + H(x, Du^{\epsilon}(x)) = \epsilon \Delta u^{\epsilon}(x).
$$

Under nice assumption on H , the equation is a parabolic equation is is known to have smooth unique solutions.

Questions

- \bullet What happens when we take $\epsilon \to 0.$ Can we say $u^\epsilon \to u$ where u is the solution to the static problem?
- **²** If so, what is the rate of convergence? (Our focus)
- **³** We call this a viscosity solution, which is a type of weak solution.

イロン イ押ン イヨン イヨン

Example

Figure: Solutions to the viscous 1D Eikonal equation: $|u^{\epsilon'}(x)| - 1 = \epsilon \Delta u^{\epsilon}(x)$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Definition (Viscosity solution)

- (i) We define *u* to be a **viscosity subsolution** if for all test functions $\varphi \in C^1(\Omega)$, $u \varphi$ has a max at x_0 in Ω , and $u(x_0) + H(x_0, D\varphi(x_0)) < 0$.
- (ii) We define *u* to be a **viscosity supersolution** if for all test functions $\psi \in C^1(\Omega)$, $u - \psi$ has a minimum at x_0 in Ω , and $u(x_0) + H(x_0, D\psi(x_0)) > 0$.

A solution is said to be a viscosity solution if both conditions are satisfied.

イロト イ押 トイヨ トイヨト

Convergence of u *ϵ*

By the classical Bernstein's method, we are able to get

$$
||u^{\epsilon}||_{L^{\infty}(\mathbb{R}^n)}+||Du^{\epsilon}||_{L^{\infty}(\mathbb{R}^n)}
$$

This gives us equicontinuity of the family u^{ϵ} (all members of the family are continuous with equal variation).

- Then, by Arzela Ascoli, there exists a subsequence $\{\epsilon_{k_j}\}$ such that $\{u_{k_j}^\epsilon\}\to u.$ \bullet
- \bullet We deduce that u solves the static problem.

Convergence to u

- \bullet Our viscosity solution u is unique, which can be shown with the comparison principle.
- So we conclude that $u^{\epsilon} \to u$ as $\epsilon \to 0$.

イロメ イ押メ イヨメ イヨメー

Theorem (Convergence rate)

Assume that H satisfies

$$
\begin{cases}\nH \in C^2(\mathbb{R}^n \times \mathbb{R}^n), \\
H, D_p H \in BUC(\mathbb{R}^n \times B(0, R)) \text{ for each } R > 0, \\
\lim_{|p| \to \infty} \inf_{x \in \mathbb{R}^n} \left(\frac{1}{2} H(x, p)^2 + D_x H(x, p) \cdot p\right) = +\infty\n\end{cases}
$$

Assume further that $H \in Lip(\mathbb{R}^n \times B(0,R))$ for each $R > 0$. For each $\epsilon \in (0,1)$, let u^{ϵ} be the solution to the vanishing viscosity Hamilton Jacobi, and let u be the unique viscosity solution of the Hamilton Jacobi. Then there exists C *>* 0 such that

$$
||u^{\epsilon}-u||_{L^{\infty}(\mathbb{R}^{n})}\leq C\sqrt{\epsilon}.
$$

We divide the proof into 5 steps.

∢ロ ▶ (母 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Step 1: Test function from above

We use our favorite trick, the doubling variable technique.

$$
\Phi^{\delta}(x,y) = u^{\epsilon}(x) - u(y) - \frac{|x-y|^2}{2\alpha} - \delta(\mu(x) + \mu(y)),
$$

where we chose $\delta,\alpha>0$ and $\mu\in \textit{C}^2(\mathbb{R}^n\times\mathbb{R}^n)$ such that

$$
\begin{cases} \mu(0) = 0, \mu(x) \ge 0 & \text{for all } x \in \mathbb{R}^n \\ \lim_{|x| \to \infty} \mu(x) = +\infty \\ |D\mu(x)| + |D^2\mu(x)| \le 1 & \text{in } \mathbb{R}^n. \end{cases}
$$

Assume this has a max at (x_δ, y_δ) :

Takeaway

Since $x \mapsto \Phi^{\delta}(x, y_{\epsilon})$ attains a max at x_{δ} , so does $x \mapsto u^{\epsilon}(x) - (\frac{|x-y_{\delta}|^2}{2 \alpha} + \delta \mu(x))$. We then get

$$
u^{\epsilon}(x_{\delta})+H(x_{\delta},\frac{x_{\delta}-y_{\delta}}{\alpha}+\delta D\mu(x_{\delta}))\leq\epsilon(\frac{n}{\alpha}+\delta \Delta \mu(x_{\delta}))\leq\epsilon(\frac{n}{\alpha}+\delta).
$$

イロメ イ押メ イヨメ イヨメー

Since $\mathsf{y} \mapsto \Phi^{\delta}(\mathsf{x}_{\delta}, \mathsf{y})$ has a min at y_{δ} , this means that

$$
y \mapsto u(y) + \frac{|x - y|^2}{2\alpha} + \delta\mu(y) = u(y) - (-\frac{|x - y|^2}{2\alpha} - \delta\mu(y))
$$

Supersolution test

.

Using
$$
\left(-\frac{|x-y|^2}{2\alpha} - \delta\mu(y)\right)
$$
 as our test function

$$
u(y_\delta)+H(y_\delta,\frac{x_\delta-y_\delta}{\alpha}-\delta D\mu(y_\delta))\geq 0.
$$

What we have so far

$$
\begin{cases} u^{\epsilon}(x_{\delta})+H(x_{\delta},\frac{x_{\delta}-y_{\delta}}{\alpha}+\delta D\mu(x_{\delta}))\leq\epsilon(\frac{n}{\alpha}+\delta)\\ u(y_{\delta})+H(y_{\delta},\frac{x_{\delta}-y_{\delta}}{\alpha}-\delta D\mu(y_{\delta}))\geq0 \end{cases}
$$

Þ

イロト イ部 トイミト イヨト

Two evaluations

We get that $\Phi^\delta\bigl({x_\delta},{x_\delta}\bigr) \le \Phi^\delta\bigl({x_\delta},{y_\delta}\bigr)$, which gives

$$
\frac{|x_\delta-y_\delta|^2}{2\alpha}\leq u(x_\delta)-u(y_\delta)+\delta(\mu(x_\delta)-\mu(y_\delta)).
$$

 $\Phi^\delta(y_\delta, y_\delta) \leq \Phi^\delta(\mathsf{x}_\delta, \mathsf{y}_\delta)$, which gives

$$
\frac{|x_{\delta}-y_{\delta}|^2}{2\alpha}\leq u^{\epsilon}(x_{\delta})-u^{\epsilon}(y_{\delta})-\delta(\mu(x_{\delta})-\mu(y_{\delta})).
$$

Result

$$
\frac{|x_{\delta}-y_{\delta}|^2}{\alpha}\leq u(x_{\delta})-u(y_{\delta})+u^{\epsilon}(x_{\delta})-u^{\epsilon}(y_{\delta})\leq C|x_{\delta}-y_{\delta}|+C'|x_{\delta}-y_{\delta}|\leq 2C|x_{\delta}-y_{\delta}|.
$$

This gives

$$
|x_\delta - y_\delta| \leq C\alpha
$$

Þ

メロトメ 伊 トメ 君 トメ 君 トー

Since
$$
H \in Lip(\mathbb{R}^n \times B(0, R))
$$
, for each $R > 0$, pick δ :
\n
$$
H\left(y_\delta, \frac{x_\delta - y_\delta}{\alpha} - \delta D\mu(y_\delta)\right) - H\left(x_\delta, \frac{x_\delta - y_\delta}{\alpha} - \delta D\mu(y_\delta)\right) \leq C\alpha
$$
\n
$$
H\left(x_\delta, \frac{x_\delta - y_\delta}{\alpha} - \delta D\mu(y_\delta)\right) - H\left(x_\delta, \frac{x_\delta - y_\delta}{\alpha} + \delta D\mu(x_\delta)\right) \leq C\delta
$$

Result

$$
H\left(y_{\delta},\frac{x_{\delta}-y_{\delta}}{\alpha}-\delta D\mu\left(y_{\delta}\right)\right)-H\left(x_{\delta},\frac{x_{\delta}-y_{\delta}}{\alpha}+\delta D\mu\left(x_{\delta}\right)\right)\leq C(\alpha+\delta)
$$

Ξ

イロト イ部 トイミト イミト

Step 5: Combining

We get that for all x

$$
u^{\epsilon}(x) - u(x) \le u^{\epsilon}(x_{\delta}) - u(y_{\delta})
$$

\n
$$
\le H(x_{\delta}, \frac{x_{\delta} - y_{\delta}}{\alpha} + \delta D\mu(x_{\delta})) - H(y_{\delta}, \frac{x_{\delta} - y_{\delta}}{\alpha} - \delta D\mu(y_{\delta})) + \epsilon(\frac{n}{\alpha} + \alpha)
$$

\n
$$
\le C(\delta + \alpha) + \epsilon(\frac{n}{\alpha} + \delta).
$$

Letting $\delta \rightarrow 0$, we conclude that

$$
u^{\epsilon}(x)-u(x)\leq C(\epsilon/\alpha+\alpha).
$$

Choosing $\alpha = \epsilon$ (AM-GM) gives us one side of the desired inequality. Performing a symmetric arguments gets us the desired result.

Final

A symmetric argument completes the proof that

$$
\|u^{\epsilon}-u\|_{L^{\infty}(\mathbb{R}^n)}\leq C\sqrt{\epsilon}
$$

K ロ ト K 御 ト K 君 ト K 君 ト .

In optimal control theory, the minimum cost (called the value function) can be formulated through the Dynamic Programming Principle. **This function gives us the control that induces the minimum cost.**

Theorem

The value function u is a viscosity solution of the static Hamilton–Jacobi equation

$$
\lambda u + H(x, Du) = 0 \quad \in \mathbb{R}^n,
$$

where for $(x, p) \in \mathbb{R}^n \times \mathbb{R}^n$

$$
H(x,p)=\sup_{v}\{-b(x,v)\cdot p-f(x,v)\}.
$$

←ロト (押) (手) (手) …

Future

This was done as a reading course with Dr. Son Tu. The proof I presented was given by Crandall and Lions. In the summer, we will continue studying HJE by working on a paper titled "Uniqueness set for an ergodic problem with state-constraint."

イロト イ押 トイヨ トイヨト