MTH 234 Chapter 12 - Vectors and Geometry of Space MSU

5 Equations of Lines and Planes (Part A)

5.1 Introduction to Lines in Space — Video Before Class

Objective(s):
o Define lines in space several different ways and learn some basic terminology.
e Determine when lines are parallel.

e Determine when lines intersect or not.

Theorem 5.1. Vectors v and w are parallel if and only if r[ =K 3-3\7 for some scalar k.

Alternatively if v = (v;,v2,v3) and w = (w;, w2, w3) then v and w are parallel if and only if

N
Vi = Kwy - — N - - - O
{VL’K'WZ ov vXW = O or \V)(W t—’
Vb= wa

Definition(s) 5.2.

(2) A vector equation for the line L through Po(zo, Yo, 20) parallel to v is given by:

— =\
P)= ¥, + Tv ) —0<t< oo

. A¥XY
divectiow vedor ( o = OPD )
where rg is the position vector of Pp.
(b) t is called the pemmckf :

(c) Alternatively if ro = (zo, %0, 20) and v = (a, b, c). wg can write a line in parametric equation

(X)), 2 GY) C e
- me
PW) = (abye) + t (“Ov‘dm?") —oo<t<oo WW)

(d) a,b, and c are called direchor  wumbers of L.

(e) Finally we can chose to solve each of the parametric equations for ¢ to get the

qummedac b of L given by:
& £
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Definition(s) 5.3.

(a) Suppose r(t) = rg + tv and s(t) = sp + tw intersect. Then the angle between them is the same as the angle between
- =d - AN
vy W . Likewise r(t) and s(t) are parallel if and only if v I w

(b) Lines that do not intersect and are not parallel are called ___§Ke X/

We don'’t really have skew lines in 2D though. Let’s take a closer look at them here: https://tinyurl.com/mth234-002

20 3D

Example 5.4. Consider each pair of lines. Determine if

(i) They intersect (by finding the point of intersection). X

(ii) They don’t intersect and are parallel. oY
iii) They don’t intersect and are skew. /
(iii) They _—

(a) r1(t) = (3,1,0) +¢(2,0,1) and ry(s) = (1,-2,5) + s(-1,3,-2)
v Hey arl nok prellel suce (zo) i wot I (-1,3,-2) | r(-).sC)

o mlergect? (34'21;)\»’0) = (4-8,—2+5S;5';-28>
5221 = 4-§ e
{ 4 <= —2.+438 =>8._4_/ fe hag wo solubvry/
S

= . skow e v=9
(b) ra(t) = (14+26,9— 5t,) and ra(s) = (3-5,3+55,28) — —wot pamllel

4.+2t=<5’f A+4s = 3-5 % {53 =2 - g:Z/S“
i J=Firmaog g -105 = 35 6 - 155 fs -2
: = ¥
\
HHere i§ m.‘nJeffed)W : vz(%) o (3,%) 3_h§,25;_, 2_2.;)

©) L: z(t)=t+3, y(t) = -2t - 5, 2(t) =4
Ly: z(s) = 3 — 2, y(s) = 4s, 2(s)=-9
L: (3-54) +t(+,2,0) /I
L L35 0)-93 +$(-2 4,0

(4,'2'()) ] @) (-2, 4 ©)

9 wat wmiersect

(mmlle(
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5.2 Parametrizations, Line Segments, and More Examples — During Class

Objective(s):
e Determine when two parametrizations describe the same line.
e Create a way to parametrize a piece of a line.

e Gain more exposure to types of line problems that can be asked.

Example 5.5. One small annoyance with parametrizing lines is that the parametrization is not unique. Using a graphing

utility show that
Ly: =142t y=5-2t z2=6¢

Ly: z=3—-s5s y=3+s 2=6-3s

are the same line

Theorem 5.6. Two parametrizations r;(t) and rz(s) describe the same line if they are parn lle |

and _ging throughy ows common ot

Now let’s use Theorem 5.6 to show that L; and L, describe the same line in Example 5.5.
L. (4,5,0) +t(2,-2,¢) (2,-2,9- -2 (4.1,-3)
Ly (5.3, 67 + 3(‘111; '3) *Wiag are paralle|
e ’FD{ G =" Lz(Z)?. C/i_,g_/()) E L'
' Horefore Hey ae Ry come e .

Theorem 5.7 (Equation of a line segment). The line segment from rg to r; is give by the vector equation

T = ()7 + AR

0<t<1
Po ¢ N oY)
Example 5.8. Find an equation for the line segment from (1,2, 3) to (5, 2"0)_ (recall - Yo = OFPo )
TW - U0 (1.25)++(52,6) _ P‘i\_ / "t
0 S~ e,
= [1,2,%) + t((52,0) - 1,2,3)) A
1(."2’5)41(4)0)'?)) 0O ?'. '

Page 26



MTH 234 Chapter 12 - Vectors and Geometry of Space MSU

Example 5.9.
(a) Find parametric equations of the line that passes through the points A(2,3,4) and B(1,0,-1).
Flt) = (4-1) (23 4) +1(4,0,-1)

= (234 + 4 ( (4,0)-1) - (2,3,4))
= (2l5l4) + '(7(—4,'3, —‘;)

(b) At what point does the line intersect the zy-plane.

Example 5.10. The lines ry(¢) = (1 +1,1—¢,2t) and ry(s) = (2 — s,,2) intersect at (2,0,2).

Determine the angle between the lines.

P
;ﬁr): (4,,1,0) +t(4-4, 2.)

- «
nWs: (20,2) +s(-4,1,0)
| G <,

v
mp o mp | AEDrida~20 o -2
WA % 2t J\m 140 Jo.J 2 12
N —
IE 3
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5.3 Distance from a Point to a Line — During Class

Objective(s):
¢ Develop a formula to determine the distance from a point to a line.

o Utilize the newly developed formula to calculate the distance from a point to a line in space!

Now we have lines, we have points, lets talk about distance!

Here is a pretty picture

distance (0. 1)) = Ie@l= \dl

BN = |§T’|.\7‘.&h6

L5 were B s acule
Husg (pmjec{oﬂ)
1Rl = (5P| w8

< s 12
sl (]

(2]
K

"}&p& —_—
il :-|SP:<01
fol

Theorem 5.11. The distance from a Point P to a line through S parallel to v is given by
A J
| P xv I

!

And this is a perfectly good Theorem but that triangle looks like something we have seen before when we were talking about

projections. So in fact....

Theorem 5.12. The distance from a Point P to a line through S parallel to v is given by 4 /2

‘owf"}ﬂ,-\;‘ (S_(;)‘ = (‘ STP‘\‘L' ‘P(DJ'\; (ST))‘L)
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Example 5.13. Find the distance between the point (0,1,0) and the line containing the points (1,1,0) and (2, —4,1).

(a) By using Theorem 5.11

P(EO\\)O) ;‘: (2;-4,')— ((;‘;07
.:; = (1,'?) ‘)
C\ i\—(\? = (O,l.ﬂ:)-—(l;';l)) —_ (-1,0)O>
S ) = = 2 1 -7
( L10) ] \goxv ! JoH Ty ] 5
] 17 ] Jimea* 27
1 1 K
#xd = (~‘ 6 o
| s 1
= (6) 4'S'>

(b) By using Theorem 5.12

-2
. e P+ v -
(4,0:0)- (4,-5,1)

D02
BV

<l

- -)
1 v

7V

g A= f M- lpejy 1) - < 93 - L

)
=
Y] (o
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