4 The Cross Product 4.1 Review and Introduction of the Cross Product- Video Before Class

Objective(s):

• Define the cross product

• Review how to find determinants of 3x3 matrices.

. Use the cross product to find a vector that is perpendicular to two other vectors.

The goal of this class is given two non-zero non-parallel vectors a,b to be able to find a vector n that is

perpendiumar to both a and b.

Heart of the Proofs:

- (a) Apply dot product with both a and b and see that they are Q .
- (b) Expand $|\mathbf{a} \times \mathbf{b}|^2$ carefully and group cleverly to get $|\mathbf{a} \times \mathbf{b}|^2 = ||\mathbf{a}||^2 ||\mathbf{b}||^2 (\mathbf{a} \cdot \mathbf{b})^2$.
- (c) Comes from (b).

Example 4.4. Find a vector **u** that satisfies $\mathbf{u} \cdot (9,3,1) = 0$ and $\mathbf{u} \cdot (-2,4,0) = 0$

Cloose
$$
\vec{u} = (\frac{9,3,1}{2}) \times (-2,4,0)
$$

= $\begin{vmatrix} i & j & k \\ 9 & 3 & 1 \\ -2 & 4 & 0 \end{vmatrix} = i \begin{vmatrix} 3 & 1 \\ 4 & 0 \end{vmatrix} -j \begin{vmatrix} 9 & 1 \\ -2 & 0 \end{vmatrix} + k \begin{vmatrix} 9 & 3 \\ -2 & 4 \end{vmatrix}$
= $(-4,-2,42)$

4.2 Properties and Applications of the Cross Product - During Class

Objective(s):

• Determine and utilize properties of the cross product.

 \mathcal{L}

- Use the cross product to calculate areas of triangles and parallelograms.
- Apply the cross product to the physical application of torque.

 \sim

Example 4.6. Find the cross product $\mathbf{a} \times \mathbf{b}$ and verify that it is orthogonal to both $\mathbf{a} = \langle 1, 1, -1 \rangle$ and $\mathbf{b} = \langle 2, 4, 6 \rangle$.

$$
a * b = \begin{vmatrix} i & j & k \\ 4 & 4 & -1 \\ 2 & 4 & 6 \end{vmatrix} = i \begin{vmatrix} 1 & -1 \\ 4 & 6 \end{vmatrix} = i \begin{vmatrix} 1 & -1 \\ 2 & 6 \end{vmatrix} + k \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix}
$$

\n
$$
a * b = (10, -8, 2) \begin{vmatrix} 2 & (10, -8, 2) \\ 1 & 2 \end{vmatrix} = 10 - 8 - 2 = 0
$$

\n
$$
(a * b) \cdot b = (10, -8, 2) \cdot (1, 1, -1) = 10 - 8 - 2 = 0
$$

Theorem 4.7 (Properties of the Cross Product). Let a , b , c be vectors and r , s are scalars:	
(a) $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$	(d) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$
(b) $(\mathbf{ra}) \times (\mathbf{sb}) = (\mathbf{rs}) (\mathbf{a} \times \mathbf{b})$	(e) $(\mathbf{b} + \mathbf{c}) \times \mathbf{a} = \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a}$
(c) $\mathbf{0} \times \mathbf{a} = \overrightarrow{\mathbf{0}} \times \mathbf{a}$	(f) $\mathbf{a} \times \mathbf{a} = \mathbf{a} \times \mathbf{b}$

Example 4.8. Given that $\langle 1, 1, 0 \rangle \times \langle 3, 4, -2 \rangle = \langle -2, 2, 1 \rangle$ quickly calculate the following:

(a)
$$
\langle 3, 4, -2 \rangle \times \langle 1, 1, 0 \rangle
$$
 = $(2, -2, 1)$

(b)
$$
(4,4,0) \times (3,4,-2) = (-8,8,4)
$$

Recall from geometry that a parallelogram with side lengths x and y with the angle θ between its sides has area

 $A = xy \sin \theta$. Translated into MTH 234 notation:

Theorem 4.9. The parallelogram formed by vectors **a** and **b** with angle
$$
\theta
$$
 between
them is given by:
Area of ||-ogram = $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta$

Example 4.10. Find the area of the parallelogram generated by $u = i - j$ and $v = j + 3k$.

$$
\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 0 & 1 & 3 \end{vmatrix} = i \begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix} - j \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} + k \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix}
$$

and
$$
\vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ 1 & -1 & 0 \\ 0 & 1 & 3 \end{vmatrix} = i \begin{vmatrix} -1 & 0 \\ 1 & 3 \end{vmatrix} - j \begin{vmatrix} i & 0 \\ 0 & 5 \end{vmatrix} + k \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix}
$$

and
$$
\vec{u} \times \vec{v} = \begin{vmatrix} -1 & -3 & -3 \\ 0 & 1 & 3 \end{vmatrix} = i \begin{vmatrix} -1 & 0 \\ 0 & 3 \end{vmatrix} - j \begin{vmatrix} -1 & 0 \\ 0 & 5 \end{vmatrix} = j \begin{vmatrix} -1 & 0 \\ 0 & 5 \end{vmatrix}
$$

Example 4.11. Find the area of the triangle with vertices $P(1,0,1), Q(-2,1,3)$, and $R(4,2,5)$.

$$
\vec{PQ} = (-2, 1, 3) - (1, 0, 1) = (-3, 1, 2)
$$

\n
$$
\vec{PQ} = (4, 2, 5) - (1, 0, 1) = (3, 2, 4)
$$

\n
$$
\vec{PQ} \times \vec{PR} = \begin{vmatrix} 1 & 1 & k \\ -3 & 1 & 2 \\ 3 & 2 & 4 \end{vmatrix} = 1 \begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \end{vmatrix} + k \begin{vmatrix} -3 & 2 & k \\ 3 & 4 & 5 \end{vmatrix} = 2
$$

\nArea $-\frac{1}{2} \sqrt{0^2 + 18^2 + 9^2} =$
\n
$$
\text{Area } -\frac{1}{2} \sqrt{0^2 + 18^2 + 9^2} =
$$

Page 22

TITH HITS

Example 4.12. Find two unit vectors orthogonal to both j-k and i+j.
\n
$$
\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \n\vec{u} & \vec{v} & \vec{v} \end{vmatrix}
$$
\n
$$
= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \n\vec{u} & \vec{v} & \vec{v} \end{vmatrix}
$$
\n
$$
= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \n\vec{i} & \vec{v} & \vec{v} \end{vmatrix} - \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ \n\vec{i} & \vec{v} & \vec{v} \end{vmatrix} + \begin{vmatrix} \vec{v} & \vec{j} & \vec{k} \\ \n\vec{i} & \vec{v} & \vec{v} \end{vmatrix} = \begin{vmatrix} (4, -1, -1) & \text{magnitude } \sqrt{3} \\ (4, -1, -1) & \text{magnitude } \sqrt{3} \end{vmatrix}
$$
\ntwo vectors are

\n
$$
\frac{(4, -1, -1)}{\sqrt{3}} \quad \text{and} \quad -\frac{(4, -1, -1)}{\sqrt{3}}
$$

So our application to the real world of the day is Torque! Here is the picture

Example 4.13. Find the magnitude of the torque generated by force F at the pivot point A in the figure below

Theorem
\n(a)
$$
\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})
$$
 (1.1.10)
\n(b) $(\vec{a} \times \vec{a} + \vec{b}) = (\vec{a} \times \vec{a} + \vec{b}) (\vec{a} \times \vec{b}) = (\vec{a} \times \vec{a} + \vec{b}) (\vec{a} \times \vec{b})$
\n(c) $\vec{b} \times \vec{a} = \vec{d}$
\n(d) $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b} + \vec{a} \times \vec{c})$
\n(e) $(\vec{b} + \vec{c}) \times \vec{a} = (\vec{b} \times \vec{a} + \vec{b} \times \vec{a})$
\nExample 4.8. Given that (1,1,0) × (3,4,-2) = (-2,2,1) quickly calculate the following:
\n(a) (3,4,-2) × (1,1,0)
\n(b) (4,4,0) × (3,4,-2)
\n(c) $|\vec{b}| \times \vec{a} = -\vec{a} \times \vec{b} = -(-2,2,1)$ quickly calculate the following:
\n(a) $(3,4,-2) \times (1,1,0)$
\n(b) $(4,4,0) \times (3,4,-2)$
\n(c) $|\vec{b}| \times \vec{a} = -\vec{a} \times \vec{b} = -(-2,2,1) = (2,-2,1)$
\n(d) $|\vec{a} \times \vec{b}| = (-8,8,4)$
\n2.11
\n3.12
\n4.13
\n4.14
\n5.14
\n6.15
\n6.16
\n7.16
\n8.16
\n9.17
\n10.18
\n11.19
\n12.10
\n13.11
\n14.11
\n15.12
\n16.13
\n17.15
\n18.16
\n19.17
\n10.19
\n11.10
\n12.11
\n13.11
\n14.12
\n15.13
\n16.13
\n17.15
\n18.16
\n19.17