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A model problem: escape of a light ray

• Let Ω be open with smooth boundary ∂Ω (the medium).
• A light ray starting from x ∈ Ω is a path γ : [0, t ]→ Ω with γ(0) = x for some t > 0.
• c : Ω→ [0,+∞) the medium constraint of the speed of light (inhomogeneity).
• Tγ = inf{s ≥ 0 : γ(s) /∈ Ω}: first time the light ray exists the medium and Tγ = +∞ if γ([0,∞)) ⊂ Ω.

The light ray takes the path that exists the medium in the least amount of time with the speed constraint

|γ̇(s)| ≤ c(γ(s)), s ≥ 0.

This leads to the introduction of the minimum time function

u(x) = inf
{

Tγ : γ(0) = x , |γ̇(s)| ≤ c(γ(s))
}

for x ∈ Ω. Assume that ∇u(x) exists at all points, then using Bellman’s optimality principle and a Taylor
expansion: {

c(x)|Du(x)| = 1 in Ω,

u(x) = 0 on ∂Ω.

This is Eikonal equation.
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Example - vanishing viscosity

The minimal amount of time required to travel from a point to the boundary with constant cost 1 is
model by

|u′(x)| = 1 in (−1, 1) with u(−1) = u(1) = 0.

Infinitely many a.e. solutions, physically correct solution: u(x) = 1− |x |.

Approximated equation with unique solution{
|(uε)′| = 1 + ε(uε)′′ in (−1, 1),
uε(−1) = uε(1) = 0.

Vanishing viscosity

uε(x) = 1− |x |+ ε
(

e−1/ε − e−|x|/ε
)
→ u(x)
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Optimal control and first-order Hamilton-Jacobi equation

Let U be a compact metric space. A control is a Borel measurable map α : [0,∞) 7→ U. We are given:{
b = b(x , a) : Ω× U → Rn velocity vector field
f = f (x , a) : Ω× U → R running cost.

For x ∈ Rn and a control α(·), let yx,α(t) solves

ẏ(t) = b(y(t), α(t)), t > 0, and y(0) = x

Question. Minimize the cost functional (λ ≥ 0 - the discount factor)

u(x) = inf
α(·)

∫ ∞

0
e−λsf

(
y x,α(s), α(s)

)
ds.

Define H(x , p) = supv∈U (−b(x , v) · p − f (x , v)) then

λu(x) + H(x ,Du(x)) = 0 in Rn

assuming that u ∈ C∞ (using optimality or dynamic programming principle). However the value function
is usually not smooth!−→ viscosity solution.

Son Tu (MSU) Vanishing viscosity with state-constraint April 19, 2023 5 / 22



Viscosity solution
Definition

Let Ω ⊂ Rn be open, bounded, we consider the fully nonlinear PDE

F (x , u,Du,D2u) = 0 in Ω.

F is non-decreasing in u, non-increasing in D2u (degenerate elliptic).
−→ No integration by parts, only maximum principle.

Subsolution: φ ∈ C2, u − φ max at x :
F (x , u(x),Dφ(x),D2φ(x)) ≤ 0

Supersolution: ψ ∈ C2, u − ψ min at x :
F (x , u(x),Dψ(x),D2ψ(x)) ≥ 0

Viscosity solution is both subsolution
and supersolution.

−→ physically correct solution
−→ value function in optimal control theory
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State-constraint: 1st-order

We consider {
u(x) + |Du|p − f (x) ≤ 0 in Ω,

u(x) + |Du|p − f (x) ≥ 0 on Ω
(PDE0)

This is the state-constrain Hamilton-Jacobi equation Soner (1986), which describe the value function of a
deterministic optimal control problem

u(x) = inf
η(0)=x

{∫ ∞

0
e−sL(η(s),−η̇(s))ds : η ∈ AC, η([0,∞)) ⊂ Ω

}
.

Here L(x , v) : Ω×Rn → R is the running cost, Legendre’s trans-
form of H(x , ξ) = |ξ|p − f (x). Generally, if H is smooth and u is
smooth {

u(x) + H(x ,Du(x)) = 0 in Ω,

DpH(x ,Du(x)) · ν(x) ≥ 0 on ∂Ω.
Ω

x
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State-constraint: 2nd-order
Stochastic trajectories

Given stochastic control α(·), we solve{
dXt = α (Xt) dt +

√
2ε dBt for t > 0,

X0 = x .
(1)

Bt ∼ N (0, t) is the Brownian motion, to constraint Xt ∈ Ω, we define

Âx =
{
α(·) ∈ C(Ω) : P(Xt ∈ Ω) = 1 for all t ≥ 0

}
Minimize the cost function

uε(x) = inf
α∈Âx

E
[∫ ∞

0
e−tL

(
Xt , α(Xt)

)
dt
]
,

If 1 < p ≤ 2, uε ∈ C2(Ω) Lasry and Lions (1989) is the solution touε(x) + |Duε(x)|p − f (x)− ε∆uε(x) = 0 in Ω,

lim
dist(x,∂Ω)→0

uε(x) = +∞. (PDEε)

If p > 2 then uε ∈ C(Ω). We focus on the subquadratic case 1 < p ≤ 2.
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State-constraint: 2nd-order
Viscosity framework

Using the stochastic, Lasry and Lions (1989) Dynamic Programming Principle, uε solves{
uε(x) + |Duε(x)|p − f (x)− ε∆uε(x) ≤ 0 in Ω,

uε(x) + |Duε(x)|p − f (x)− ε∆uε(x) ≥ 0 on Ω,
(2)

• uε is a viscosity subsolution in Ω, that is if x0 ∈ Ω and φ ∈ C2(Ω) with uε − φ has a maximum over Ω
at x0, then

uε(x0) + |Dφ(x0)|p − f (x0)− ε∆φ(x0) ≤ 0.

• uε is a viscosity supersolution on Ω, that is that is if x0 ∈ Ω and φ ∈ C2(Ω) with uε − φ has a
maximum over Ω at x0, then

uε(x0) + |Dφ(x0)|p − f (x0)− ε∆φ(x0) ≥ 0.

When 1 < p ≤ 2, uε is the unique solution with uε(x) = +∞ on ∂Ω.
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Literature

Qualitative: As ε→ 0, uε → u in some sense, and in the limit, u is no longer blowing-up on the
boundary:

1 Lasry and Lions (1989) (PDEs approach)
2 Capuzzo-Dolcetta and Lions (1990) (PDEs approach)
3 Fabbri et al. (2017) (stochastic control approach)

In the literature the solution is also called large solutions, and has been studied extensively. Blow-up rate
of gradient is studied in Porretta (2004); Porretta and Véron (2006).
Quantitative: Rate of convergence: not yet done for state-constraint but for Dirichlet BC:{

uε(x) + H(x ,Duε)− ε∆uε(x) = 0 in Ω,

uε(x) = 0 on ∂Ω
−→

{
u(x) + H(x ,Du) = 0 in Ω,

u = 0 on ∂Ω

The rate is O(
√
ε), ∥uε − u∥L∞(Ω) ≤ C

√
ε and the one-sided rate can be O(ε) for convex Hamiltonians

1 Fleming (1961)
2 Bardi and Capuzzo-Dolcetta (1997)
3 Crandall and Lions (1984)
4 Evans (2010), Tran (2011) (nonlinear adjoint method)
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Properties of solutions

A blow up rate of uε near ∂Ωuε(x) + |Duε(x)|p − f (x)− ε∆uε(x) = 0 in Ω,

lim
dist(x,∂Ω)→0

uε(x) = +∞. (PDEε)

When H(x , ξ) = |ξ|p − f (x), we can compute the asymptotic expansion of uε near ∂Ω. Assume

uε ∼ C
d(x)α

we find

uε(x) ∼ Cαεα+1

d(x)α
, p < 2, α =

2− p
p − 1

, Cα =
(α+ 1)α+1

α

uε(x) ∼ −ε log(d(x)) , p = 2

Son Tu (MSU) Vanishing viscosity with state-constraint April 19, 2023 11 / 22



Summary of main results

Theorem (Han and Tu (2022))
Without loss of generality, we can assume f ≥ 0. Also assume f is Lipschitz.

1 Assume f = 0 on ∂Ω then |uε − u| ≤ C
√
ε in the interior of Ω. More precisely,

− C
√
ε ≤ uε − u ≤ C

√
ε+

Cεα+1

d(x)α
, p < 2

− C
√
ε ≤ uε − u ≤ C

√
ε+ Cε| log(d(x))|, p = 2

2 If f is compactly supported in Ω then

−C
√
ε ≤ uε − u ≤ Cε+

Cεα+1

d(x)α
.

3 If f ∈ C2(Ω) such that Df = 0 and f = 0 on ∂Ω then

−C
√
ε ≤ uε − u ≤ Cε1/p +

Cεα+1

d(x)α
, 1 < p < 2.
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Difficulties and contributions

Difficulties
• The blow-up behaviors at the boundary makes it a nontrivial task to apply conventional method:

doubling variables.
−→We construct a new blow-up solution near the boundary and glue things together

• A uniform bound for the Laplacian of uε is complicated with blow-up behavior.
−→We avoid this by using a bound for the Laplacian of u instead. This is related to the
semi-concavity of the solution uε and u.

Contributions
• The rate O(ε1/p) is new!
• Construct a new blow-up solution to deal with the blow-up behavior of uε (major difficulty)
• Specific (blow-up rate) of semi-concavity behavior of u of improve the one-sided rate.
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A heuristic argument

Heuristic: Doubling variable method

Φ(x , y) = uε(x)− u(y)− |x − y |2

σ
, (x , y) ∈ Ω× Ω

• Viscosity solution ∼ weak solution in L∞ =⇒move the derivative to test function without integration
by parts by maximum principle.

• Assume Φ has a maximum at xσ, yσ and xσ ∈ Ω then Φ(xσ, yσ) ≥ Φ(xε, xε) implies that |xσ − yσ| ≤ Cσ

• |x − yσ |2

ε
as a test function for uε(x) in (PDEε) to get

uε(xσ) +
∣∣∣∣2(xσ − yσ)

σ

∣∣∣∣p − f (xσ)− ε
2n
σ

≤ 0

• −
|xσ − y |2

ε
as a test function for u(y) in (PDE0) to obtain

u(yσ) +
∣∣∣∣2(xσ − yσ)

σ

∣∣∣∣p − f (yσ) ≥ 0

uε(x)− u(x) ≤ uε(xσ)− u(yσ) ≤
2nε
σ

+ f (xσ)− f (yσ) ≤
2nε
σ

+ Cσ

and the best choice here is σ =
√
ε.
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The O(
√
ε) rate

Idea

• To overcome the difficulties in the argument, we instead use

Φ(x , y) = uε(x)− Cαεα+1

d(x)α︸ ︷︷ ︸
ψε(x)

−u(y)− C|x − y |2

σ
(3)

• This forces the maximum happen at (xσ, yσ) where xσ ∈ Ω (make Cα bigger). We also have

Dψε(x) = Duε(x) + Cαα
(

ε

d(x)

)α+1

Dd(x). (4)

• |Dψε(x)| ≤ C if d(x) ≥ ε Armstrong and Tran (2015) =⇒ boundary layer is O(ε) from the boundary.
• However, we need d(xσ) ≈ εγ for γ ∈ (0, 1). We need fine control of this after using some penalty to

force the max happens.
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The O(
√
ε) rate

Reduction

Recall the equation uε(x) + |Duε(x)|p − f (x)− ε∆uε(x) = 0 in Ω,

lim
dist(x,∂Ω)→0

uε(x) = +∞. (PDEε)

• Consider the case f = 0 first (then u ≡ 0), then (ν > 1)

0 ≤ uε ≤ νCαεα+1

d(x)α
+ Cεα+2

︸ ︷︷ ︸
supersolution

• Compactly supported supp(f ) ⊂ Ωκ = {x ∈ Ω : d(x) > κ}. If Φ(x , y) has max at (xσ, yσ)
(a) If xσ ∈ Ωκ then d(xσ) ≥ Cκ, it is stronger than d(xσ) ≈ εγ .
(b) If xσ ∈ Ω\Ωκ we use a new barrier, bound solution by w that solves the PDE with w = +∞ on ∂Ωκ ∪ ∂Ω.

• General case f = 0 on ∂Ω: we do a cut-off fκ → f as κ→ 0 and supp(fκ) ⊂ Ωκ. Since f = 0 on ∂Ω, we
can construct ∥fκ − f∥L∞ ≤ Cκ.
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The O(ε) rate
Compactly supported data

Heuristic
• To overcome κ+ C

κ
, which make the best rate is only O(

√
ε) we use uε as a C2 test function for u.

• Assume that uε(x)− u(x) has a maximum over Ω at some interior point x0 ∈ Ω, then

max
x∈Ω

(
uε(x)− u(x)

)
≤ uε(x0)− u(x0) ≤ ε∆uε(x0).

• If u is uniformly semiconcave in Ω, then ∆uε(x0) ≤ ∆u(x0) ≤ C.
Difficulties

1. uε = +∞ on ∂Ω, we can subtract by Cεα+1

d(x)α to make maximum happen in the interior (then we need
the barrier to handle the case d(x) is small← the barrier still plays a crucial role).

2. Unless f ∈ C2
c(Ω), in general, u is not uniformly semiconcave but only locally semiconcave. In fact

∆u(x) ≤ C
d(x)

and this is enough to get O(ε) for compactly supported data.
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The O(ε) rate
Compactly supported data - different cases

Figure: The different data that lead to different semiconcavities of u

• One the left: If f can be extended to a semiconcave function f̃ : Rn → R by setting f = 0 on Ωc , then u
is uniformly semiconcave, i.e., |Du| ≤ C, and hence an improvement on the rate happens.

• One the right: the best we can do is |Du| ≤ Cd(x)−1.
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Semiconcavity of solutions to the first-order problem

We want to show that if x , x − h, x + h ∈ Ω then

u(x + h)− 2u(x) + u(x − h) ≤ C|h|2

• If f can be extended to f ∈ Rn by setting f = 0 outside Ω and f̃ is semiconcave then u is the
restriction of ũ where

ũ(x) + |Dũ(x)|p − f̃ (x) = 0 in Rn.

Equation in the whole space is easier to deal with, see Calder (2018).
• If f = 0 on ∂Ω but cannot be extended to semiconcave function globally by setting f = 0 outside Ω,

we relies on optimal control formula and p ≤ 2 =⇒ q = p∗ > 2. Take a minimizer η of x and let η hits
∂Ω at time T , then

u(x) =
∫ T

0
e−s(c|η̇(s)|q + f (η(s))

)
ds.

• ξ 7→ |ξ|q is C2 if q > 2, thus locally semiconcave.
• Bounded velocity |η̇| ≤ C implies d(x) ≤ CT .
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Discussion

Open questions
1 Can we remove the assumption f = 0 on ∂Ω?
2 What is the optimal rate of convergence? (The semiconcavity of u in a more general setting was

studied in a recent paper Han (2022)).
3 What is the rate of convergence for the super-quadratic case p > 2?
4 More general form of Hamiltonians?
5 A finer control of solution locally (which could leads to better rate) by using stochastic approach?
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Thank you!

The End

Questions & Comments

Thank you

——————————————————————————
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