Remarks on the vanishing viscosity process of state-constraint Hamilton-Jacobi equations Rate of convergence

Son Tu

Michigan State University *tuson@msu.edu*

Academy of Mathematics and Systems Science April 19, 2023

Son Tu (MSU) Son Tu (MSU) [Vanishing viscosity with state-constraint](#page-21-0) April 19, 2023 1 / 22

 \blacktriangleright \blacktriangleleft э.

4 **D F** f a 299

1 [The state-constraint problem](#page-2-0)

[The model, optimal control and viscosity solution](#page-2-0) [The first-state-constraint problem](#page-6-0) [The second-order state-constraint problem](#page-7-0)

2 [Literature](#page-9-0)

8 [Main results](#page-10-0)

[Properties of solutions](#page-10-0) [Main results](#page-11-0) [Semiconcavity](#page-18-0)

4 [Discussion](#page-19-0)

∢ □ ▶ ∢ ^{†□}

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n$

э

A model problem: escape of a light ray

- Let Ω be open with smooth boundary $\partial\Omega$ (the medium).
- A light ray starting from $x \in \Omega$ is a path $\gamma : [0, t] \to \Omega$ with $\gamma(0) = x$ for some $t > 0$.
- $c : \overline{\Omega} \to [0, +\infty)$ the medium constraint of the speed of light (inhomogeneity).
- *T*_γ = inf{*s* > 0 : γ (*s*) $\notin \Omega$ }: first time the light ray exists the medium and *T*_γ = +∞ if γ ([0, ∞)) ⊂ Ω.

The light ray takes the path that exists the medium in the least amount of time with the speed constraint

$$
|\dot\gamma(s)|\leq c(\gamma(s)),\qquad s\geq 0.
$$

This leads to the introduction of the minimum time function

$$
u(x) = \inf \{ T_{\gamma} : \gamma(0) = x, |\dot{\gamma}(s)| \le c(\gamma(s)) \}
$$

for *x* ∈ Ω. *Assume* that ∇*u*(*x*) exists at all points, then using Bellman's optimality principle and a Taylor expansion:

$$
\begin{cases}\nc(x)|Du(x)| = 1 & \text{in } \Omega, \\
u(x) = 0 & \text{on } \partial\Omega.\n\end{cases}
$$

This is *Eikonal equation*.

 E 940

The minimal amount of time required to travel from a point to the boundary with constant cost 1 is model by

 $|u'(x)| = 1$ in (-1, 1) with $u(-1) = u(1) = 0$.

Infinitely many a.e. solutions, physically correct solution: $u(x) = 1 - |x|$ *.*

Approximated equation with unique solution

$$
\begin{cases}\n\left|\left(u^{\varepsilon}\right)'\right| = 1 + \varepsilon(u^{\varepsilon})'' & \text{in } (-1, 1), \\
u^{\varepsilon}(-1) = u^{\varepsilon}(1) = 0.\n\end{cases}
$$

Vanishing viscosity

$$
u^{\varepsilon}(x) = 1 - |x| + \varepsilon \left(e^{-1/\varepsilon} - e^{-|x|/\varepsilon} \right) \to u(x)
$$

G.

Let *U* be a compact metric space. A *control* is a Borel measurable map α : $[0,\infty) \mapsto U$. We are given:

$$
\begin{cases}\nb = b(x, a) : \overline{\Omega} \times U \to \mathbb{R}^n \quad \text{velocity vector field} \\
f = f(x, a) : \overline{\Omega} \times U \to \mathbb{R} \quad \text{running cost.}\n\end{cases}
$$

For $x \in \mathbb{R}^n$ and a control $\alpha(\cdot)$, let $y^{x,\alpha}(t)$ solves

 $\dot{y}(t) = b(y(t), \alpha(t)), \quad t > 0, \quad \text{and} \quad y(0) = x$

Question. Minimize the cost functional $(\lambda > 0$ - the discount factor)

$$
u(x)=\inf_{\alpha(\cdot)}\int_0^\infty e^{-\lambda s}f\left(y^{x,\alpha}(s),\alpha(s)\right)\;ds.
$$

Define $H(x, p) = \sup_{v \in U} (-b(x, v) \cdot p - f(x, v))$ then

 $\lambda u(x) + H(x, Du(x)) = 0$ in \mathbb{R}^n

assuming that *u* ∈ C [∞] (using optimality or dynamic programming principle). However the *value function is usually not smooth!*−→ *viscosity solution*.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Viscosity solution Definition

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, we consider the fully nonlinear PDE

$$
F(x, u, Du, D^2u) = 0 \quad \text{in } \Omega.
$$

F is non-decreasing in *u*, non-increasing in *D* 2 *u* (*degenerate elliptic*).

 \rightarrow No integration by parts, only maximum principle.

Subsolution: $\varphi \in C^2$, $\mu - \varphi$ max at x : $F(x, u(x), D\varphi(x), D^2\varphi(x)) \leq 0$ **Supersolution:** $\psi \in C^2$, $\mathsf{u} - \psi$ min at x : *F*(*x*, *u*(*x*), *D*^{ψ}(*x*), *D*^{2} ψ (*x*)) \geq 0

Viscosity solution is *both* subsolution and supersolution.

- −→ *physically correct solution*
- −→ *value function in optimal control theory*

We consider

$$
\begin{cases}\n u(x) + |Du|^p - f(x) \le 0 & \text{in } \Omega, \\
 u(x) + |Du|^p - f(x) \ge 0 & \text{on } \overline{\Omega}\n\end{cases}
$$
\n(PDE₀)

This is the state-constrain Hamilton-Jacobi equation [Soner \(1986\)](#page-20-0), which describe the value function of a deterministic optimal control problem

$$
u(x)=\inf_{\eta(0)=x}\left\{\int_0^\infty e^{-s}L(\eta(s),-\dot{\eta}(s))ds:\eta\in AC,\eta([0,\infty))\subset\overline{\Omega}\right\}.
$$

Here $L(x, v)$: $\overline{\Omega} \times \mathbb{R}^n \to \mathbb{R}$ is the running cost, Legendre's transform of $H(x,\xi) = |\xi|^p - f(x)$. Generally, if *H* is smooth and *u* is smooth

$$
\begin{cases}\n u(x) + H(x, Du(x)) = 0 & \text{in } \Omega, \\
 D_p H(x, Du(x)) \cdot \nu(x) \ge 0 & \text{on } \partial \Omega.\n\end{cases}
$$

State-constraint: 2nd-order

Stochastic trajectories

Given stochastic control $\alpha(\cdot)$, we solve

$$
\begin{cases}\n dX_t = \alpha\left(X_t\right)dt + \sqrt{2\varepsilon} \, d\mathbb{B}_t & \text{for } t > 0, \\
 X_0 = x.\n\end{cases}
$$

 \mathbb{B}_t ∼ $\mathcal{N}(0, t)$ is the Brownian motion, to constraint $X_t \in \Omega$, we define

$$
\widehat{\mathcal{A}}_x = \left\{ \alpha(\cdot) \in C(\Omega) : \mathbb{P}(X_t \in \Omega) = 1 \text{ for all } t \geq 0 \right\}
$$

Minimize the cost function

$$
u^{\varepsilon}(x)=\inf_{\alpha\in\widehat{\mathcal{A}}_{x}}\mathbb{E}\left[\int_{0}^{\infty}e^{-t}L(X_{t},\alpha(X_{t})) dt\right],
$$

If 1 $<$ ρ \leq 2, $\textit{u}^{\varepsilon} \in \text{C}^2(\Omega)$ [Lasry and Lions \(1989\)](#page-20-1) is the solution to

$$
\begin{cases}\n u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^p - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\
\lim_{\text{dist}(x, \partial \Omega) \to 0} u^{\varepsilon}(x) = +\infty.\n\end{cases}
$$

If $\rho>2$ then $u^\varepsilon\in\mathrm{C}(\overline{\Omega}).$ We focus on the subquadratic case 1 $<\rho\leq2.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

 (PDE_e)

(1)

Using the stochastic, [Lasry and Lions \(1989\)](#page-20-1) Dynamic Programming Principle, *u*^ε solves

$$
\begin{cases} u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) \leq 0 & \text{in } \Omega, \\ u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^{p} - f(x) - \varepsilon \Delta u^{\varepsilon}(x) \geq 0 & \text{on } \overline{\Omega}, \end{cases}
$$
 (2)

 $•$ *u* $^{\varepsilon}$ is a viscosity subsolution in Ω, that is if $x_0\in\Omega$ and $\varphi\in C^2(\Omega)$ with $u^\varepsilon-\varphi$ has a maximum over Ω at x_0 , then

$$
u^{\varepsilon}(x_0)+|D\varphi(x_0)|^p-f(x_0)-\varepsilon\Delta\varphi(x_0)\leq 0.
$$

 $•$ *u* $^{\varepsilon}$ is a viscosity supersolution on $\overline\Omega$, that is that is if $x_0\in\Omega$ and $\varphi\in C^2(\overline\Omega)$ with $u^{\varepsilon}-\varphi$ has a maximum over $\overline{\Omega}$ at x_0 , then

$$
u^{\varepsilon}(x_0)+|D\varphi(x_0)|^p-f(x_0)-\varepsilon\Delta\varphi(x_0)\geq 0.
$$

When $1 < p \leq 2$, u^{ε} is the unique solution with $u^{\varepsilon}(x) = +\infty$ on $\partial \Omega$.

 \equiv 990

Literature

Qualitative: As $\varepsilon \to 0$, $u^\varepsilon \to u$ in some sense, and in the limit, u is no longer blowing-up on the boundary:

- ¹ [Lasry and Lions \(1989\)](#page-20-1) (*PDEs approach*)
- ² [Capuzzo-Dolcetta and Lions \(1990\)](#page-20-2) (*PDEs approach*)
- ³ [Fabbri et al. \(2017\)](#page-20-3) (*stochastic control approach*)

In the literature the solution is also called *large solutions*, and has been studied extensively. Blow-up rate of gradient is studied in [Porretta \(2004\)](#page-20-4); Porretta and Véron (2006).

Quantitative: Rate of convergence: not yet done for state-constraint but for Dirichlet BC:

$$
\begin{cases}\nu^{\varepsilon}(x) + H(x, Du^{\varepsilon}) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\
u^{\varepsilon}(x) = 0 & \text{on } \partial\Omega\n\end{cases}\n\longrightarrow\n\begin{cases}\nu(x) + H(x, Du) = 0 & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega\n\end{cases}
$$

The rate is $\mathcal{O}(\sqrt{\varepsilon})$, $\|u^\varepsilon-u\|_{L^\infty(\overline{\Omega})}\leq \mathcal{C}\sqrt{\varepsilon}$ and the one-sided rate can be $\mathcal{O}(\varepsilon)$ for convex Hamiltonians

- \bullet [Fleming \(1961\)](#page-20-6)
- **2** [Bardi and Capuzzo-Dolcetta \(1997\)](#page-20-7)
- **3** [Crandall and Lions \(1984\)](#page-20-8)
- ⁴ [Evans \(2010\)](#page-20-9), [Tran \(2011\)](#page-20-10) (nonlinear adjoint method)

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

A blow up rate of *u*『 near ∂Ω

$$
\begin{cases}\n u^{\varepsilon}(x) + |D u^{\varepsilon}(x)|^p - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\
 \lim_{\text{dist}(x, \partial \Omega) \to 0} u^{\varepsilon}(x) = +\infty.\n\end{cases}
$$
\n(PDE_{\varepsilon})

When *H*(*x*, ξ) = |ξ| *^p* − *f*(*x*), we can compute the asymptotic expansion of *u* ^ε near ∂Ω. Assume

$$
u^{\varepsilon} \sim \frac{C}{d(x)^{\alpha}}
$$

we find

$$
\frac{d^{\varepsilon}(x) \sim \frac{C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}}}{\left|\frac{d^{\varepsilon}(x) \sim -\varepsilon \log(d(x))}{\alpha}\right|}, \qquad p < 2, \qquad \alpha = \frac{2-p}{p-1}, \quad C_{\alpha} = \frac{(\alpha+1)^{\alpha+1}}{\alpha}
$$

ヨメ イヨメ

K ロ ト イ 何

э

Theorem [\(Han and Tu \(2022\)](#page-20-11))

Without loss of generality, we can assume f ≥ 0*. Also assume f is Lipschitz.* ¹ *Assume f* = 0 *on* ∂Ω *then* |*u* ^ε − *u*| ≤ *C* √ ε *in the interior of* Ω*. More precisely,*

$$
-C\sqrt{\varepsilon} \leq u^{\varepsilon} - u \leq C\sqrt{\varepsilon} + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}, \qquad p < 2
$$

-C\sqrt{\varepsilon} \leq u^{\varepsilon} - u \leq C\sqrt{\varepsilon} + C\varepsilon |\log(d(x))|, \qquad p = 2

² *If f is compactly supported in* Ω *then*

$$
-C\sqrt{\varepsilon} \leq u^{\varepsilon} - u \leq C\varepsilon + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}.
$$

³ *If f* ∈ C 2 (Ω) *such that Df* = 0 *and f* = 0 *on* ∂Ω *then*

$$
-C\sqrt{\varepsilon} \leq u^{\varepsilon} - u \leq C\varepsilon^{1/p} + \frac{C\varepsilon^{\alpha+1}}{d(x)^{\alpha}}, \qquad 1 < p < 2.
$$

э

Difficulties

- The blow-up behaviors at the boundary makes it a nontrivial task to apply conventional method: doubling variables.
	- \rightarrow We construct a new blow-up solution near the boundary and glue things together
- **•** A uniform bound for the Laplacian of u^{ε} is complicated with blow-up behavior. → We avoid this by using a bound for the Laplacian of *u* instead. This is related to the semi-concavity of the solution $u^ε$ and u.

Contributions

- The rate $\mathcal{O}(\varepsilon^{1/p})$ is new!
- \bullet Construct a new blow-up solution to deal with the blow-up behavior of \mathcal{u}^ε (major difficulty)
- Specific (blow-up rate) of semi-concavity behavior of *u* of improve the one-sided rate.

医阿雷氏阿雷氏

A heuristic argument

Heuristic: Doubling variable method

$$
\Phi(x,y) = u^{\varepsilon}(x) - u(y) - \frac{|x-y|^2}{\sigma}, \qquad (x,y) \in \overline{\Omega} \times \overline{\Omega}
$$

- Viscosity solution ∼ *weak solution in L* [∞] =⇒ move the derivative to *test function without integration by parts* by maximum principle.
- Assume Φ has a maximum at x_{σ} , y_{σ} and $x_{\sigma} \in \Omega$ then $\Phi(x_{\sigma}, y_{\sigma}) \ge \Phi(x_{\varepsilon}, x_{\varepsilon})$ implies that $|x_{\sigma} y_{\sigma}| \le C\sigma$ • $|x - y_{\sigma}|^2$ $\frac{f(\mathbf{y}|\mathcal{S})}{\varepsilon}$ as a test function for $u^{\varepsilon}(x)$ in [\(PDE](#page-7-1)_{ε}) to get

$$
u^{\varepsilon}\left(x_{\sigma}\right)+\left|\frac{2(x_{\sigma}-y_{\sigma})}{\sigma}\right|^{p}-f(x_{\sigma})-\varepsilon\frac{2n}{\sigma}\leq 0
$$

• $- \frac{|x_{\sigma} - y|^2}{ }$ $\frac{y_1}{\varepsilon}$ as a test function for $u(y)$ in (*[PDE](#page-6-1)*₀) to obtain

$$
u(y_{\sigma})+\left|\frac{2(x_{\sigma}-y_{\sigma})}{\sigma}\right|^p-f(y_{\sigma})\geq 0
$$

$$
u^{\varepsilon}(x)-u(x)\leq u^{\varepsilon}(x_{\sigma})-u(y_{\sigma})\leq \frac{2n\varepsilon}{\sigma}+f(x_{\sigma})-f(y_{\sigma})\leq \frac{2n\varepsilon}{\sigma}+C\sigma
$$

and the best choice here is $\sigma = \sqrt{\varepsilon}$.

• To overcome the difficulties in the argument, we instead use

$$
\Phi(x, y) = \underbrace{u^{\varepsilon}(x) - \frac{C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}}}_{\psi^{\varepsilon}(x)} - u(y) - \frac{C|x - y|^2}{\sigma}
$$
\n(3)

• This forces the maximum happen at (x_{σ}, y_{σ}) where $x_{\sigma} \in \Omega$ (make C_{α} bigger). We also have

$$
D\psi^{\varepsilon}(x)=Du^{\varepsilon}(x)+C_{\alpha}\alpha\left(\frac{\varepsilon}{d(x)}\right)^{\alpha+1}Dd(x).
$$
\n(4)

- $|D\psi^\varepsilon(x)|\leq C$ if $d(x)\geq \varepsilon$ [Armstrong and Tran \(2015\)](#page-20-12) \Longrightarrow boundary layer is $\mathcal{O}(\varepsilon)$ from the boundary.
- However, we need $d(x_{\sigma}) \approx \varepsilon^{\gamma}$ for $\gamma \in (0,1)$. We need fine control of this after using some penalty to force the max happens.

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

Recall the equation

$$
\begin{cases}\n u^{\varepsilon}(x) + |Du^{\varepsilon}(x)|^p - f(x) - \varepsilon \Delta u^{\varepsilon}(x) = 0 & \text{in } \Omega, \\
\lim_{\text{dist}(x, \partial \Omega) \to 0} u^{\varepsilon}(x) = +\infty.\n\end{cases}
$$
\n(PDE_{\varepsilon})

• Consider the case $f = 0$ first (then $u \equiv 0$), then $(\nu > 1)$

$$
0 \leq u^{\varepsilon} \leq \underbrace{\frac{\nu C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}} + C \varepsilon^{\alpha+2}}_{\text{supersolution}}
$$

• Compactly supported $supp(f) \subset \Omega_{\kappa} = \{x \in \Omega : d(x) > \kappa\}$. If $\Phi(x, y)$ has max at (x_{σ}, y_{σ}) (a) If $x_{\sigma} \in \Omega_{\kappa}$ then $d(x_{\sigma}) \geq C\kappa$, it is stronger than $d(x_{\sigma}) \approx \varepsilon^{\gamma}$. (b) If $x_\sigma \in \Omega \backslash \Omega_\kappa$ we use a new *barrier*, bound solution by *w* that solves the PDE with $w = +∞$ on $\partial \Omega_\kappa \cup \partial \Omega$.

• General case $f = 0$ on $\partial\Omega$: we do a cut-off $f_{\kappa} \to f$ as $\kappa \to 0$ and $\text{supp}(f_{\kappa}) \subset \Omega_{\kappa}$. Since $f = 0$ on $\partial\Omega$, we can construct $||f_{\kappa} - f||_{L^{\infty}} < C_{\kappa}$.

Heuristic

- \bullet To overcome $\kappa+\frac{C}{\kappa}$, which make the best rate is only $\mathcal{O}(\sqrt{\varepsilon})$ we use $\pmb{\nu}^{\varepsilon}$ as a \pmb{C}^2 test function for $\pmb{\nu}$.
- Assume that $u^{\varepsilon}(x) u(x)$ has a maximum over $\overline{\Omega}$ at some interior point $x_0 \in \Omega$, then

$$
\max_{x\in\overline{\Omega}}\Big(u^{\varepsilon}(x)-u(x)\Big)\leq u^{\varepsilon}(x_0)-u(x_0)\leq{\varepsilon}\Delta u^{\varepsilon}(x_0).
$$

 \bullet If ι is uniformly semiconcave in $\overline{\Omega}$, then $\Delta u^{\varepsilon}(x_{0})\leq\Delta u(x_{0})\leq C.$

Difficulties

- 1. *u*^ε = +∞ on ∂Ω, we can subtract by $\frac{C\varepsilon^{\alpha+1}}{d(x)^\alpha}$ to make maximum happen in the interior (then we need the barrier to handle the case $d(x)$ is small \leftarrow the barrier still plays a crucial role).
- 2. Unless *f* ∈ C 2 *^c* (Ω), in general, *u* is not uniformly semiconcave but only locally semiconcave. In fact

$$
\Delta u(x) \leq \frac{C}{d(x)}
$$

and this is enough to get $\mathcal{O}(\varepsilon)$ for compactly supported data.

Figure: The different data that lead to different semiconcavities of *u*

- \bullet One the left: If f can be extended to a semiconcave function $\tilde f:\R^n\to\R$ by setting f = 0 on Ω^c , then μ is uniformly semiconcave, i.e., |*Du*| ≤ *C*, and hence an improvement on the rate happens.
- \bullet One the right: the best we can do is $|Du| \leq C d(x)^{-1}.$

Semiconcavity of solutions to the first-order problem

We want to show that if *x*, *x* − *h*, *x* + *h* \in $\overline{\Omega}$ then

$$
u(x+h)-2u(x)+u(x-h)\leq C|h|^2
$$

• If *f* can be extended to *f* ∈ R *ⁿ* by setting *f* = 0 outside Ω and ˜*f* is semiconcave then *u* is the restriction of $\tilde{\mu}$ where

$$
\tilde{u}(x) + |D\tilde{u}(x)|^p - \tilde{f}(x) = 0 \quad \text{in } \mathbb{R}^n.
$$

Equation in the whole space is easier to deal with, see [Calder \(2018\)](#page-20-13).

• If $f = 0$ on $\partial \Omega$ but cannot be extended to semiconcave function globally by setting $f = 0$ outside Ω , we relies on *optimal control formula and* $p\leq 2\Longrightarrow q=p^*>$ *2.* Take a minimizer η of x and let η hits ∂Ω at time *T*, then

$$
u(x)=\int_0^T e^{-s}(c|\dot{\eta}(s)|^q+f(\eta(s)))ds.
$$

- $\bullet \ \ \xi \mapsto |\xi|^q$ is \mathcal{C}^2 if $q>$ 2, thus locally semiconcave.
- Bounded velocity $|\eta| \leq C$ implies $d(x) \leq CT$.

 298

Open questions

- **1** Can we remove the assumption $f = 0$ on $\partial\Omega$?
- ² What is the optimal rate of convergence? (The semiconcavity of *u* in a more general setting was studied in a recent paper [Han \(2022\)](#page-20-14)).
- **3** What is the rate of convergence for the super-quadratic case $p > 2$?
- **4** More general form of Hamiltonians?
- ⁵ A finer control of solution locally (which could leads to better rate) by using stochastic approach?

ヨメ イヨメ

G.

- Armstrong, S. N. and Tran, H. V. (2015). Viscosity solutions of general viscous Hamilton–Jacobi equations. *Mathematische Annalen*, 361(3):647–687.
- Bardi, M. and Capuzzo-Dolcetta, I. (1997). *Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations*. Modern Birkh¨auser Classics.

Calder, J. (2018). Lecture notes on viscosity solutions.

- Capuzzo-Dolcetta, I. and Lions, P.-L. (1990). Hamilton-Jacobi Equations with State Constraints. *Transactions of the American Mathematical Society*, 318(2):643–683.
- Crandall, M. G. and Lions, P. L. (1984). Two Approximations of Solutions of Hamilton-Jacobi Equations.
- Evans, L. C. (2010). Adjoint and Compensated Compactness Methods for Hamilton–Jacobi PDE. *Archive for Rational Mechanics and Analysis*, 197(3):1053–1088.
- Fabbri, G., Gozzi, F., and Swiech, A. (2017). *Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations*. Probability Theory and Stochastic Modelling.

Fleming, W. H. (1961). The convergence problem for differential games. *Journal of Mathematical Analysis and Applications*, 3(1):102–116.

- Han, Y. (2022). Global semiconcavity of solutions to first-order Hamilton-Jacobi equations with state constraints. (arXiv:2205.01615). arXiv:2205.01615 [math] type: article.
- Han, Y. and Tu, S. N. T. (2022). Remarks on the Vanishing Viscosity Process of State-Constraint Hamilton–Jacobi Equations. *Applied Mathematics & Optimization*, 86(1):3.
- Lasry, J. M. and Lions, P.-L. (1989). Nonlinear Elliptic Equations with Singular Boundary Conditions and Stochastic Control with State Constraints. I. The Model Problem. *Mathematische Annalen*, 283(4):583–630.
- Porretta, A. (2004). Local estimates and large solutions for some elliptic equations with absorption. *Advances in Differential Equations*, 9(3-4):329–351. Publisher: Khayyam Publishing, Inc.
- Porretta, A. and Véron, L. (2006). Asymptotic Behaviour of the Gradient of Large Solutions to Some Nonlinear Elliptic Equations. *Advanced Nonlinear Studies*, 6(3):351–378. Publisher: Advanced Nonlinear Studies, Inc. Section: Advanced Nonlinear Studies.
- Soner, H. (1986). Optimal Control with State-Space Constraint I. *SIAM Journal on Control and Optimization*, 24(3):552–561.
- Tran, H. V. (2011). Adjoint methods for static Hamilton–Jacobi equations. *Calculus of Variations and Partial Differential Equations*, 41(3):301–319.

GB 1

Thank you!

The End

Questions & Comments

Thank you

——————————————————————————

- Co-author: Yuxi Han
- This work was done at University of Wisconsin Madison
- The work was supported in part by the GSSC Fellowship (UW-Madison), NSF grant DMS1664424 and NSF CAREER grant DMS-1843320

ミメスミ

э