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A model problem: escape of a light ray

® Let Q be open with smooth boundary 9 (the medium).
* Alight ray starting from x € Q is a path v : [0, {] — Q with v(0) = x for some ¢ > 0.
® ¢:Q — [0, +0c0) the medium constraint of the speed of light (inhomogeneity).

o T, =inf{s>0:~(s) ¢ Q}: first time the light ray exists the medium and T, = 40 if 4(]0, >0)) C Q.
The light ray takes the path that exists the medium in the least amount of time with the speed constraint
11(s)l < c(x(s)), s=0.

This leads to the introduction of the minimum time function
u(x) =inf {T, : 7(0) = x, [¥(s)| < c(v(s))}

for x € Q. Assume that Vu(x) exists at all points, then using Bellman'’s optimality principle and a Taylor
expansion:

c(x)|Du(x)| =1 in Q,
u(x)=0 on 99.

This is Eikonal equation.
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Example - vanishing viscosity

The minimal amount of time required to travel from a point to the boundary with constant cost 1 is

model by
[u'(x)| =1 in(=1,1)  with u(—=1) =u(1) =0.

Infinitely many a.e. solutions, physically correct solution: u(x) =1 — |x|.

Approximated equation with unique solution

(u)'|=1+¢e(u)” in(-1,1),
u(—1)=u*(1)=0.

o ds 05 4 -dz g o2 os o5 o8 10

Vanishing viscosity o

U(x)=1—|x|+¢ (e*”S - e*‘x‘/g) — u(x) B
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Optimal control and first-order Hamilton-Jacobi equation

Let U be a compact metric space. A control is a Borel measurable map « : [0, c0) — U. We are given:

b=b(x,a): Qx U—R" velocity vector field
f=f(x,a):QxU—R running cost.

For x € R" and a control a(-), let y*“(t) solves
y(t) = b(y(t),e(t)), t>0, —and  y(0)=x
Question. Minimize the cost functional (A > 0 - the discount factor)
u(x) = |r2f)/ e *f (y(s),a(s)) ds.
Define H(x, p) = sup,cy (—b(x, v) - p— f(x, v)) then
Au(x) + H(x, Du(x)) =0in R"

assuming that u € C* (using optimality or dynamic programming principle). However the value function
is usually not smooth!—s viscosity solution.
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Viscosity solution

Definition
Let © C R" be open, bounded, we consider the fully nonlinear PDE
F(x,u,Du,D*u) =0  inQ.

F is non-decreasing in u, non-increasing in D?u (degenerate elliptic).
— No integration by parts, only maximum principle.

Subsolution: ¢ € C?, u — ¢ max at x:

F(x, u(x), Dp(x), D*¢(x)) < 0 ¥
Supersolution: v € C%, u — v min at x:

F(x, u(x), Dy(x), D*9(x)) > 0

Viscosity solution is both subsolution
and supersolution. U

— physically correct solution
— value function in optimal control theory w
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State-constraint: 1st-order

We consider

{u(x) +|DufP —f(x) <0 inQ, (PDEy)

u(x)+|DufP —f(x) >0 onQ
This is the state-constrain Hamilton-Jacobi equation Soner (1986), which describe the value function of a
deterministic optimal control problem

u(x) = n(i(?)fzx {/ooo e *L(n(s), —n(s))ds : n € AC, ([0, 0)) C ﬁ} .

Here L(x,v) : Q x R” — R is the running cost, Legendre’s trans-
form of H(x, &) = |¢|P — f(x). Generally, if H is smooth and u is
smooth

u(x) + H(x,Du(x)) =0 in Q,
DyH(x, Du(x)) - v(x) >0 on 99Q.
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State-constraint: 2nd-order

Stochastic trajectories

Given stochastic control «(+), we solve

{dXtIOz(Xt)dt-i-\/gdBy fort > 0, o

Xo = X.
B: ~ N(0, t) is the Brownian motion, to constraint X; € Q, we define
Ay = {a(~) €C(Q) : P(X; € Q) =1forall t > o}

Minimize the cost function

U(x)= inf E Vow e 'L(X;, a(X)) dt],

acAyx

If1<p<2u e CQ(Q) Lasry and Lions (1989) is the solution to

lim U5 (x) = +oc. (PDE.)

U (x) 4 |Duf(x)|P — f(x) —eAu®(x) =0 in Q,
dist(x,00Q)—0

If p > 2 then u® € C(Q). We focus on the subquadratic case 1 < p < 2.
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State-constraint: 2nd-order
Viscosity framework

Using the stochastic, Lasry and Lions (1989) Dynamic Programming Principle, u® solves

0 in Q,

{us(x) + |Duf (x)|P — f(x) — eAUF(X) 2, 2
0 on Q,

<
us(x) + |Duf (x)|P — f(x) — eAu®(x) >

e 1F is a viscosity subsolution in Q, that is if x, € Q and ¢ € C3(Q) with u® — ¢ has a maximum over Q
at xo, then
u* (%) + [Dyp(x0)|° — f(x0) — eAp(x0) < 0.

* u° is a viscosity supersolution on Q, that is that is if x, € Q and ¢ € C?(Q) with u° — p has a
maximum over Q at xp, then

U (x0) + |Dp(x0)|” — f(x0) — eAp(x0) > 0.

When 1 < p < 2, u® is the unique solution with u®(x) = 400 on 99.
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Qualitative: Ass — 0, u° — uin some sense, and in the limit, u is no longer blowing-up on the
boundary:

@ Lasry and Lions (1989) (PDEs approach)
® Capuzzo-Dolcetta and Lions (1990) (PDEs approach)
© Fabbri et al. (2017) (stochastic control approach)

In the literature the solution is also called /arge solutions, and has been studied extensively. Blow-up rate
of gradient is studied in Porretta (2004); Porretta and Véron (2006).
Quantitative: Rate of convergence: not yet done for state-constraint but for Dirichlet BC:

u*(x)+ H(x,Du®) — eAus(x) =0 in Q, N u(x)+ H(x,Du) =0 in Q,
u(x)=0 on 99 u=0 on 9Q

The rate is O(v/¢), [|[u° — Ul @ < Cy/c and the one-sided rate can be O(¢) for convex Hamiltonians
@ Fleming (1961)
® Bardi and Capuzzo-Dolcetta (1997)
©® Crandall and Lions (1984)
® Evans (2010), Tran (2011) (nonlinear adjoint method)
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Properties of solutions

A blow up rate of u® near 9Q

lim  u®(x) = +oo. (PDE.)

UE(x) + |DUE(X)P — F(X) —eAlF(x) =0 inQ,
dist(x,09)—0

When H(x, &) = |£]P — f(x), we can compute the asymptotic expansion of u® near 9Q. Assume

w S
d(x)~

we find

B (CM+1)D‘+1
p—1’ o «a

p<2, a=

d(x)« '

[U(x) ~ —clog(d(x)) |, p=2
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Summary of main results

Theorem (Han and Tu (2022))

Without loss of generality, we can assume f > 0. Also assume f is Lipschitz.

@ Assume f = 0 on 992 then |u® — u| < C+/e in the interior of Q. More precisely,

. Caa+1
—C\/Egu—USC\/E-FW, p<2
— CVe < u" — u < Ce + Cellog(d(x))], p=2

® If f is compactly supported in Q then

C€a+1
— <uU—u< :
Cve<u u_Cs—i—d(X)a
© If f € C3(Q) such that Df = 0 and f = 0 on &S then
. C6a+1
—CVe<u—u<CePy 1<p<2

d(x)>
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Difficulties and contributions

Difficulties

® The blow-up behaviors at the boundary makes it a nontrivial task to apply conventional method:
doubling variables.
— We construct a new blow-up solution near the boundary and glue things together

® Auniform bound for the Laplacian of u® is complicated with blow-up behavior.
— We avoid this by using a bound for the Laplacian of u instead. This is related to the
semi-concavity of the solution u® and u.

Contributions
e The rate O(¢"/P) is new!
e Construct a new blow-up solution to deal with the blow-up behavior of u® (major difficulty)
e Specific (blow-up rate) of semi-concavity behavior of u of improve the one-sided rate.
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A heuristic argument

Heuristic: Doubling variable method

d(x,y) = u(x) — u(y) — M7 (x,y)eQxQ

o

® Viscosity solution ~ weak solution in L= =—> move the derivative to test function without integration
by parts by maximum principle.
® Assume ¢ has a maximum at X, Yo and x, € Q then ®(x,, y») > ®(x., x-) implies that |x, — y,| < Co
o 2
° M as a test function for u¢(x) in (PDE.) to get
(3

(X0 — ¥o)

2 p 2
us(xa)-',-’ ) -l <0
o

2
o _ X =¥P 15 4 test function for u(y) in (PDEy) to obtain
€

p

—f(yo) >0

u(ys) + ‘72()(00_ Yo)

U (x) = u(x) < UF(x0) — u(yo) < % + (%) — f(¥o) < % + Co

and the best choice here is o = \/e.
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The O(y/¢) rate

Idea

® To overcome the difficulties in the argument, we instead use

o0y = v () - S ) - L G
= (x)
® This forces the maximum happen at (x., ¥») where x, € Q (make C, bigger). We also have
e a+1
Dy (x) = Du*(x) + Cacx (m) Dd(x). (4)

* |Dy°(x)| < Cif d(x) > e Armstrong and Tran (2015) = boundary layer is O(e) from the boundary.

® However, we need d(x,) ~ ¢” for v € (0, 1). We need fine control of this after using some penalty to
force the max happens.
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The O(/¢) rate

Reduction

Recall the equation
U (x) 4 |Duf(x)|P — f(x) —eAu®(x) =0 inQ,

lim  u*(x) = +o0.
dist(x,00Q)—0

(PDE.)

e Consider the case f = 0 first (then u = 0), then (v > 1)

a+1
oguf§%+05ﬂ+2

supersolution
e Compactly supported supp(f) C Q. = {x € Q: d(x) > «}. If ®(x, y) has max at (x5, ¥o)

(@) If xo € Qx then d(x,) > Ck, itis stronger than d(x,) ~ 7.
(b) If X, € Q\Q, we use a new barrier, bound solution by w that solves the PDE with w = 400 on 9, U 9.

® General case f = 0 on 9Q: we do a cut-off f, — fas x — 0 and supp(f.) C Q.. Since f = 0 on 99, we
can construct ||fx — f|| o < Ck.
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The O(e) rate

Compactly supported data

Heuristic
* To overcome  + £, which make the best rate is only O(y/z) we use v as a C? test function for u.
e Assume that u®(x) — u(x) has a maximum over Q at some interior point x, € ©, then

Tea%( (us(x) - u(x)) < Uf(x0) — u(x0) < eAU*(xo).

e If uis uniformly semiconcave in Q, then Au(x) < Au(x) < C.
Difficulties
1. U° = 400 0n 99, we can subtract by % to make maximum happen in the interior (then we need
the barrier to handle the case d(x) is small « the barrier still plays a crucial role).

2. Unless f € C2(Q), in general, u is not uniformly semiconcave but only locally semiconcave. In fact

C

Au(x) < a0

and this is enough to get O(e) for compactly supported data.
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The O(e) rate

Compactly supported data - different cases

Figure: The different data that lead to different semiconcavities of u

e One the left: If f can be extended to a semiconcave function f : R” — R by setting f = 0 on Q°, then u
is uniformly semiconcave, i.e., |Du| < C, and hence an improvement on the rate happens.

e One the right: the best we can do is |Du| < Cd(x)™".
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Semiconcavity of solutions to the first-order problem

We want to show that if x, x — h, x + h € Q then
u(x + hy — 2u(x) + u(x — h) < C|hf?

e If f can be extended to f € R" by setting f = 0 outside Q and  is semiconcave then u is the
restriction of & where 3
U(x) + |Du(x)|P — f(x)=0  inR".
Equation in the whole space is easier to deal with, see Calder (2018).

e If f =0 on 0Q but cannot be extended to semiconcave function globally by setting f = 0 outside Q,
we relies on optimal control formula and p < 2 = q = p* > 2. Take a minimizer n of x and let n hits
0 attime T, then

u(x) = / & (cli(s)| + f(n(s))) ds.

® ¢ [€|7is C?if g > 2, thus locally semiconcave.
® Bounded velocity || < Cimplies d(x) < CT.
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Discussion

Open questions
@ Can we remove the assumption f = 0 on 9Q?

® What is the optimal rate of convergence? (The semiconcavity of u in a more general setting was
studied in a recent paper Han (2022)).

© What is the rate of convergence for the super-quadratic case p > 2?
® More general form of Hamiltonians?
© A finer control of solution locally (which could leads to better rate) by using stochastic approach?
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The End

Questions & Comments

Thank you

e Co-author: Yuxi Han

® This work was done at University of Wisconsin - Madison
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