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Optimal control and first-order Hamilton-Jacobi equation

Let U be a compact metric space. A control is a Borel measurable map « : [0, c0) — U. We are given:

b=b(x,a): Qx U—R" velocity vector field
f=f(x,a):QxU—R running cost.

For x € R" and a control a(-), let y*“(t) solves
y(t) = b(y(t),e(t)), t>0, —and  y(0)=x
Question. Minimize the cost functional (A > 0 - the discount factor)
u(x) = |r2f)/ e *f (y(s),a(s)) ds.
Define H(x, p) = sup,cy (—b(x, v) - p— f(x, v)) then
Au(x) + H(x, Du(x)) =0in R"

assuming that u € C* (using optimality or dynamic programming principle). However the value function
is usually not smooth!—s viscosity solution.

Son Tu (MSU) Vanishing discount with state-constraint April 26, 2023 3/24



Viscosity solution

Definition
Let © C R" be open, bounded, we consider the fully nonlinear PDE
F(x,u,Du,D*u) =0  inQ.

F is non-decreasing in u, non-increasing in D?u (degenerate elliptic).
— No integration by parts, only maximum principle.

Subsolution: ¢ € C?, u — ¢ max at x:

F(x, u(x), Dp(x), D*¢(x)) < 0 ¥
Supersolution: v € C%, u — v min at x:

F(x, u(x), Dy(x), D*9(x)) > 0

Viscosity solution is both subsolution
and supersolution. U

— physically correct solution
— value function in optimal control theory w
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State-constraint: 1st-order

We consider

{)\U(X) + |DulP — f(x) <0 in Q, (PDE,)

Au(x) +|DulP — f(x) >0 onQ

This is the state-constrain Hamilton-Jacobi equation Soner (1986), which describe the value function of a
deterministic optimal control problem

u(x) = im;( {/000 e#‘SL(n(S), —n(s))ds :n € AC,n([0,0)) C ﬁ} .

n(0)

Here L(x,v) : Q x R” — R is the running cost, Legendre’s trans-
form of H(x, &) = |¢|P — f(x). Generally, if H is smooth and u is
smooth

Au(x) + H(x,Du(x)) =0 in Q,
DyH(x, Du(x)) - v(x) >0 on 99Q.
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State-constraint: 2nd-order

Stochastic trajectories

Given stochastic control «(+), we solve

{dXtIOz(Xt)dt-i-\/gdBy fort > 0, o

Xo = X.
B: ~ N(0, t) is the Brownian motion, to constraint X; € Q, we define
Ay = {a(~) €C(Q) : P(X; € Q) =1forall t > o}

Minimize the cost function

u(x) = inf E [/OO e ML(X:, (X)) dt} :

ac Ay 0

If1<p<2ue CZ(Q) Lasry and Lions (1989) is the solution to

lim  u(x) = +o0. (PDE.)
dist(x,00Q)—0

{Au(x) + |Du(x)]P — f(x) —eAu(x) =0  inQ,

If p > 2 then u € C(Q). We focus on the case p > 2.

Son Tu (MSU) Vanishing discount with state-constraint April 26, 2023 6/24



State-constraint: 2nd-order
Viscosity framework

Using the stochastic, Lasry and Lions (1989) Dynamic Programming Principle, u solves

0 inQ

Au(x) + |Du(x)|P — f(x) — eAu(x) 2)
0 on Q,

<
Au(x) + |Du(x)|P — f(x) — eAu(x) >

* uis a viscosity subsolution in Q, that is if X, € Q and ¢ € C3(Q) with u — ¢ has a maximum over Q at

Xo, then
AU(Xo0) + |Do(%0)|P — f(x%0) — eAp(X) < 0.

* uis a viscosity supersolution on Q, that is that is if x, € Qand ¢ € C3(Q) with u — ¢ has a maximum
over Q at xo, then
AU(Xo) + |Do(%0)|P — f(X%0) — eAp(X0) > 0.

® When p > 2, uis a unique viscosity solution, and

ueC™(Q), a=5"=
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Vanishing discount

Consider the problem:

AVa(X) + [DvA(X)]P — f(X) —eAva(X) <0 inQ,
Ava(x) + [Dva(x)|P — f(x) —eAva(x) >0  on Q.
As X\ — 0T,
° \vy — —c(0)
® vy — va(Xo) — Vv (subsequence)
for a fixed xo € 2 where v solves the ergodic problem
|Dv(x)|P — f(x) — eAv(x) < ¢(0) in Q, 3)
|[Dv(x)|P — f(x) — eAv(x) > ¢(0) onQ.

The additive eigenvalue denoted by ¢(0) is defined as
¢(0) = min {c € R : |Du(x)[Pf(x) — eAu(x) < ¢ in Q has a solution}

and it is also the unique constant where (3) can be solved [Lasry and Lions (1989)].
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Vanishing discount with changing domain

We consider p > 2, Qx = (1 + r(\))Q with

Iim@:

limy = =7 € (Foetoo),

and v, solves

AVa(X) + [Dva(X)|P — f(x) —eAva(x) <0 inQ,, Q)
AV (X) + [Dva(X)|P — f(X) —eAvy(x) >0  onQ,, ’
The corresponding ergodic problem is
|[Dv(x)]P — f(x) — eAu(x) < c(N) in Q, 0.9)
IDV(x)|P — f(x) — eAu(x) > ¢(A)  on Q. A

As X\ — 0%, one expects that vy — v (under some normalization) and v solves the erogdic problem

{|Dv(x)|p—f(x)—5Av(x) 0) inQ,

<c
|[Dv(x)|P — f(x) —eAv(x) > ¢(0) onQ. (0.1
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Questions of interest and Literature

Motivation

@ In [Barles et al. (2010)], for 1 < p < 2 then:

® the map cq is monotone with respect to Q,
® continuous with respsect to Hausdorff measure, under some appropriate perturbations.

@ For first-order equation (¢ = 0), the map A — ¢()) has c’.(-) exists and ¢/(-) exists a.e.
e [Tu (2022)] for discount general H(x, p),
e [Tu and Zhang (2023)] for general contact Hamiltonians H(x, p, u).

Questions: We want to study in more details the map ¢(2), in particular it leads to some associated
questions:

@ Convergence of vy — v?

® Characterization of the limit v in terms of ~, i.e., v = v” in some sense?
© The regularity of the map A — ¢(}).

® Relations between the derivative ¢’(\) and the limiting solution v".
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State-constraint
@ Lasry and Lions (1989) (PDEs approach - 2nn-order equation)
® Capuzzo-Dolcetta and Lions (1990) (PDEs approach)
© Fabbri et al. (2017) (stochastic control approach)

@ Attouchi and Souplet (2020); Barles and Da Lio (2004); Barles et al. (2010); Tabet Tchamba (2010) for
properties of solutions, time-dependent problem, large time behavior, ...

See also Porretta (2004); Porretta and Véron (2006)

The vanishing discount problem
@ Convergence of the vanishing discount is first established in [Davini et al. (2016)]

® Subsequence works [Ishii et al. (2017a,b)] generalize the problem into many other settings
(2nd-order, different BCs), — duality method to construct Mather measures, (in contrast with using
minimizing curves)
© Contact Hamiltonians in Tu and Zhang (2023)
The main tool a representation of solutions using Mather measures.
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Summary of main results 1

We write VL(x, v) = (DxL(x, v), DyL(x, v)) for (x,v) € Q x R". For a measure p on Q x R", we define

(1, p)a = /ﬁ o o(x, v) du(x, v), for o € C(A xRN L' ().

Theorem (Theorem 1 - Bozorgnia, Kwon and Tu, 2022)
For p > 2, the map X\ — c(\) with respect to the scaling factor X is one-sided differentiable:

/ o c(\) — ¢(0)
e i (SO = mac G (-x1)- VL Vg,
CL(O):A(%,EZ (%) = min_ (u (=x,1) - TL(xG Vg

Here, L(x, v) is the Legendre transform of H(x, &):

L(x,v) = Colv|]*+ f(x), where Co=p (p—1), pl+qg =1

(4)

©)

(6)

)
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Summary of main results 2

Consider:
in Qx,

<0
- _ A\ Q
>0 on Q,, ( V)

Aux(x) + H(x, Dux(x)) — eAuxr(x)
Auxr(x) + H(x, Dux(x)) — eAux(x)

Theorem (Theorem 2 - Bozorgnia, Kwon and Tu, 2022)

Let uy € C(Q,) be the solution to (), Q).
(i) We have uy + X~'c(0) — u” as X — 0 uniformly on Q and u” is a solution to (3).

(ii) Furthermore u” = maxwecev W Where £ denotes the family of subsolutions w to the ergodic problem (3)
such that
’Y</’L7 (_X7 V) : VL(Xz V)>Q + </J‘7 W>Q < 0 for all JINS M(Q) (8)

where v = lim r(\)/ .
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Summary of main results 3

Key different with the 1st-order case: In the 2nd-order problem, solution to
{|Dv(x)|p — f(x) —eAv(x) < c(0) inQ,
|Dv(x)|P — f(x) — eAv(x) > c(0) on Q.
is unique up to adding a constant. We can defineC : R — R by
C(y):=u"(:)—’()eR — C(y)is decreasing, concave, and C(0) = 0.

Theorem (Theorem 3 - Bozorgnia, Kwon and Tu, 2022)

We have ¢/ (0) = —C’,(0) and ¢’ (0) = —C’ (0). Therefore
c'(0) exists = C'(0) exists.

In which case
C(y) = —c'(0)  forall vy € R.

Special cases
@ If f = const then A — ¢(\) is C™
@® If fis semiconcave then A — ¢()) is semiconvex.
© If p=2then A — ¢()\) is smooth (Hopf-Cole transform).
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Difficulties and contributions

Difficulties
® The state-constraint boundary condition with 2nd-order equation is delicate, in terms of:
® |ack of finite-speed of propagation, technical problem related to comparison principle,
® constructing Mather measures with 2nd-order structure using duality is very delicate, many technical
problem arises

Contributions
(i) The technical generalization of Theorem 1 and 2 from the 1st-order case: lack of finite speed of
propagation: tools in [Ishii et al. (2017a,b)] cannot be directly applied.

(i) The new connection in Theorem between C’(-) and ¢'(+).

(A, 0n) @)
D
5 [@)

oy

® (Do): the classical vanishing discount Ishii et al. (2017a,b).

® (Dy): the one-sided differentiability of A — c())

® (D,): the vanishing discount coupled with changing domains
® (Ds): the one-sided differentiability of v — C(v)
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Main tool: a duality representation

Let us define
P (QxR") :={p e C(AXR") : ¢(x,v) = tL(x,v) + x(x),t > 0,x € C(Q)} .

For each ¢ € ®(Q x R"), define Hy(X, &) = sup,cpn (€ - V — ¢(x, v)) for (x,£) € Q x R".
For § > 0 and z € Q we define

Fin={(6.u) € (@ x B") x C(Q) : 6u + Hy(x, D) — cAu < 0in 0},
Grin = {6 - 0u(2): (6.u) € Fial.
Groa = {u €ER(QAXR") : (u,p)a >0forall p € GZ,S,Q}.

We observe that ®*(Q x R") is a convex cone in C(Q x R") and (x,£) — Hy(x, €) is well-defined and
continuous for ¢ € ®*(Q x R").

Theorem (Ishii et al. (2017a,b))

Let (z,)) € Q x (0,00) and ux € C(R) be a solution of (), Q). Then for X > 0 there holds

A — i L d —c¢(0)= mi L. 9
ux(z) ueprglgr;mw, )o an c(0) #egmm%,nw, )a €)

= i - = = e
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Proof of the result
Eigenvalues

We define the set of Mather measures on Q, to be M(2,). Consider r(A\) > 0

H(x, Dwa(x)) — eAwa(x) < c(A) inQy, 10
H(x, Dwy(x)) — eAwy(x) > ¢(\) on Q. (19
By scaling
H((1+r(\) x, (1 + r(\) Dita(x)) — eAita(x) < c()  inQ.
Using duality and definition of Mg
<M, L ((1 +r(\) x, TVMQ —L(x, v)> +¢(\) - ¢(0) > 0. 1)
Q
for p € M(Q), since (u, L) = —c(0).
(0,92x) = (0,9)
{1 (=%, v) - VL(x, V) + liminf (%) >0 forall pe M(Q) (12)
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Proof of the results
Eigenvalues

In the inverse direction, we start with w € C(Q) solves
H(x, Dw(x)) —eAw(x) < ¢(0) in Q.

Scale to Q,

F (1 Tk +1r(>\) DW(X)) —eAW(x) <c0) Q. (13)

Take vy € M(Qy),i.e, va € PNGyq, and (v, L)a, = —c(A), we obtain that

<VA, L (%(A) 1+ r(/\))v> ~L(x, v)> —¢(\) + ¢(0) > 0.

+r Q,

As vy — 1y (after scaling, in measures sense and along the sequence limsup) (0,Q,) — (0,9)

. c(A) — ¢c(0)
(o, (—x,v) - VL(x,Vv))q > |I;Tl)sou+p (T) . (14)
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Proof of the results
Eigenvalues

From the previous inequalities:

—{u, (—=x,v) - VL(x,V))a + IiAn_1)i0rlf <%) >0 forall pe M(Q)

and

(vo, (=, V) - VLx, V) = limsup <w> .

we obtain the result, as vy € M(Q), and

lim <%> = (o, (=X, V) - VL(X,V))q = sup, {p, (=X, V) - VL(x, V) -

Similarly for lim inf.
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Proof of the results
Convergence of solutions

Define
Cly) =u"() - () eR.
This feature is only available in the 2nd-order case.

ey

® (Dyo): the classical vanishing discount Ishii et al. (2017a,b).
® (D4): the one-sided differentiability of A — c())
® (D,): the vanishing discount coupled with changing domains
® (Dj3): the one-sided differentiability of v — C(v)
@ The same method applies, but with (D) gives us the convergence of uy + A~ "¢(\) — u”.
@® Using (D;) we obtain C.(0) = —c’.(0).
We do not get useful information along other directions (yet)
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Special cases

If we can compute the Mather measures set, we can get more information.
@ If f = const then A — ¢()\) is C*. This case (u, L) = const for all € M.
@® If f is semiconcave then A — ¢()) is semiconvex.
© If p=2then X — ¢()) is smooth (Hopf-Cole transform).

{|Dv(x)2 —f(x) —eAv(x) =c(A)  inQy,

(15)
v(x) = 400 on 9Q,.

Define wy : © — R by wy(x) = e~ /¢ for x € Q5 where ¥ is chosen so that ||w, ;2 = 1. We obtain a
linear problem

{—52AWA(X) + F(xX)wa(x) = c(A)wa(x) in Qy, (6)

W)\(X):O on 0f2,.

Here c¢()\) is the normal eigenvalue of a linear problem.
¢(0) = —e /
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Discussion

Open questions

@ Can we show that A — ¢()) is indeed differentiable everywhere? Or under what conditions do we
have such a property?

@® Theresult for 1 < p < 2? Such a duality representation is not available.
©® Contact structure?
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