

### Homogenization Theory of Hamilton-Jacobi Equa

Let  $H(x, y, p) \in C(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n)$  be uniformly coercive, locally uniformly bour in p and  $\mathbb{Z}^n$ -periodic in y.

For each  $\varepsilon > 0$ , let  $u^{\varepsilon} \in C(\mathbb{R}^n \times [0, \infty))$  be the viscosity solution to the Hamilton

$$\begin{cases} u_t^{\varepsilon}(x,t) + H\left(x,\frac{x}{\varepsilon}, Du^{\varepsilon}(x,t)\right) = 0 & \text{in } \mathbb{R}^n \times (0,\infty) \\ u^{\varepsilon}(x,0) = u_0(x) & \text{on } \mathbb{R}^n. \end{cases}$$

It is known (Lions-Papanicolaou-Varadhan, [4] for H = H(y, p) and Evans [2, 3]  $u^{\varepsilon}$  converges locally uniformly to u, the solution of the effective equation

$$\begin{cases} u_t(x,t) + \overline{H}(x, Du(x,t)) = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x,0) = u_0(x) & \text{on } \mathbb{R}^n. \end{cases}$$

 $\overline{H}(x,p): \mathbb{R}^{2n} \longrightarrow \mathbb{R}$  is called "effective Hamiltonian", a nonlinear averaging of the

# Cell problems and effective Hamiltonian

For each  $(x,p) \in \mathbb{R}^n \times \mathbb{R}^n$ , there is a unique constant  $\overline{H}(x,p) \in \mathbb{R}$  for which problem

$$H(x, y, p + D_y v(y)) = \lambda$$
 in  $\mathbb{T}^{t}$ 

has a continuous solution v(y) = v(y; x, p) (often named "corrector"). Heuristic asymptotic expansion (see [5]) says

$$u^{\varepsilon}(x,t) \approx u(x,t) + \varepsilon v\left(\frac{x}{\varepsilon}; x, Du(x,t)\right) + \mathcal{O}(\varepsilon^2),$$



The corrector v(y; x, p) for p = Du(x, t) basically captures the oscillation of Du(x, t)

### How fast does $u^{\varepsilon}$ converge to u as $\varepsilon \longrightarrow 0^+$ ?

According to the above formal expansion, it looks like

$$|u^{\varepsilon}-u|=\mathfrak{O}(\varepsilon).$$

However, there is NO way to justify this expansion rigorously due to [5].

- In general, there does not even exists a continuous selection of  $v(\cdot; x, p)$  wit alone Lipschitz continuous selection.
- The solution u(x,t) to (C) is only Lipschitz in (x,t), and is usually not  $C^1$ .

The best known result was due to I. Capuzzo-Dolcetta and H. Ishii [1] based proaches:

$$|u^{\varepsilon} - u| = \mathcal{O}(\varepsilon^{1/3}).$$

When H(x, y, p) = H(y, p), H. Mitake, H. V. Tran and Y. Yu in [5] established  $\mathcal{O}(\varepsilon)$  for the one dimensional case with convex Hamitonians along with other important results in higher dimensional spaces using tools from dynamical systems and weak KAM theory.

# Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension

Son N.T. Tu University of Wisconsin - Madison

| ation                          | Main results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unded and Lipschitz            | We consider the one dimensional case $n = 1$ and the conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                | H(x, y, p) = H(p) + V(x, p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| on-Jacobi equation:            | for all $(x, y, p) \in \mathbb{R} \times \mathbb{T} \times \mathbb{R}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| , $(C_{\varepsilon})$          | <b>Theorem 1. Classical mechanics Hamiltonian</b><br>Assume $n = 1$ and $H(x, y, p) = \frac{1}{2} p ^2 + V(x, y)$ where V is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ] for $H(x, y, p)$ ) that      | V(x, y) = a(x)b(y) + C<br>with $C_0$ is a constant and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (C)                            | (i) $a(x) \in C^1(\mathbb{R})$ is bounded with $a(x) > 0$ for all $x \in \mathbb{R}$ ,<br>(ii) $b(y) \in C(\mathbb{T})$ and $\max_{y \in \mathbb{T}} b(y) = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                | Assume $u_0 \in \operatorname{Lip}(\mathbb{R}) \cap \operatorname{BUC}(\mathbb{R})$ , then for each $R, T > 0$ we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the original <i>H</i> .        | $\ u^{\varepsilon} - u\ _{L^{\infty}([-R,R]\times[0,T])} \le w$<br>where <i>C</i> is a constant depends on <i>R</i> , <i>T</i> , Lip( $u_0$ ), $a(x)$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| h the following cell           | If $V(x, y) = V(y)$ does not depend on $x, u^{\varepsilon} \longrightarrow u$ uniform above can be chosen explicitly as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (CP)                           | $C = 2\left( \ u'_0\ _{L^{\infty}(\mathbb{R})} + 4(\ V\ _{L^{\infty}(\mathbb{R})}) + 4(\ V\ _{L^{\infty}$ |
| ically, the two-scale          | <b>Theorem 2. A general class of convex Hamiltonians</b><br>If $H(x, y, p) = H(p) + V(x, y)$ where $H(p) \ge H(0) = 0$ su<br>• $H(p) \in C^2(\mathbb{R})$ is strictly convex with $H''(0) > 0$ , or $H(p)$<br>• $\max_{\mathbb{R}\times\mathbb{T}} V(x, y) = 0$ , there exists $y_0 \in \mathbb{T}$ such that $V(x)$<br>• For every compact interval $I \subset \mathbb{R}$ then $\alpha_I f_I(y) \le  V(x, \alpha_I, \beta_I > 0, f_I \in C(\mathbb{R}, [0, \infty))$ and<br>$\sup_{(x, y) \in I \times \mathbb{T}} \left  \frac{V_x(x, y)}{V(x, y)} \right  \le C_I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Du <sup>ɛ</sup> around (x, t). | $  u^{\varepsilon} - u  _{L^{\infty}([-R,R] \times [0,T])} \leq C_{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                | where C is a constant depends only on $R, T, Lip(u_0), H(p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                | In the case $V(x, y) = V(y)$ , the method can be used to<br>Hamiltonians. We thus recover Theorem 1.3 in [5] and the<br>By Proposition 4.3 in [5], the rate $\mathcal{O}(\varepsilon)$ is optimal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| with respect to $p$ , let      | Sketch of the proc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d on pure PDE ap-              | Assume $V \in C^2(\mathbb{R} \times \mathbb{T})$ and $C_0 = 0$ . Now using optimal cont<br>$u^{\varepsilon}(x_0, t_0) = \inf_{\eta \in \mathbb{T}} \left\{ \varepsilon \int_0^{\varepsilon^{-1} t_0} \left( \frac{ \dot{\eta}(s) ^2}{2} - V(\varepsilon \eta(s), \eta(s)) \right) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ned an optimal rate            | where $\mathcal{T} = \{\eta(\cdot) \in AC([0, \varepsilon^{-1}t_0]), \varepsilon\eta(0) = x_0\}$ . Minimizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| important recults in           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

$$\begin{cases} \ddot{\eta}_{\varepsilon}(s) &= -\nabla V \left( \varepsilon \eta_{\varepsilon}(s), \eta_{\varepsilon}(s) \right) \cdot (\varepsilon, 1) \\ \eta_{\varepsilon}(0) &= \varepsilon^{-1} x_0. \end{cases}$$

nvex Hamiltonian is of the form: (x, y)

is of the separable form

ve have

 $\leq C\varepsilon$ 

 $d \max |b(y)|.$ 

mly in  $\mathbb{R} \times [0, \infty)$  and the constant C

 $(L^{\infty})^{1/2}$ 

uch that:

 $(p) = |p|^{\gamma}$  where  $\gamma \ge 2$ .  $(x, y_0) = 0$  for all  $x \in \mathbb{R}$ .  $|x,y|| \le \beta_I f_I(y)$  for

 $<\infty$ .

 $\leq C\varepsilon$ (p) and V(x, y).

to get the result for general convex ne convergence is uniform in this case.

# of

ntrol formula:

on

$$\eta(s)) ds + u_0 \left( \varepsilon \eta(\varepsilon^{-1}t_0) \right) \bigg\},$$

where  $\mathcal{T} = \{\eta(\cdot) \in AC(|0, \varepsilon^{-1}t_0|), \varepsilon\eta(0) = x_0\}$ . Minimizers satisfy the Euler-Lagrange equation

$$\left(0, \varepsilon^{-1} t_0\right),$$
 (E-L

# **Conservation of energy:**

There exists a constant  $r = r(\eta_{\varepsilon}) \in [V(0,0), +\infty)$  such that

$$\frac{\dot{\eta}_{\varepsilon}(s)|^2}{2} + V\left(\varepsilon\eta_{\varepsilon}(s)\right)$$

The optimization problem is equivalent to

$$u^{\varepsilon}(x_0, t_0) = \inf_r \left\{ A^{\varepsilon}[\eta_{\varepsilon}] \right\}$$

•  $r \leq 0$ , by using structure of the potential V we have

$$\left|\inf_{r\leq 0}A^{\varepsilon}[\eta_{\varepsilon}]-u_0(x_0)\right|\leq \left(\sqrt{2\|V\|_{L^{\infty}}}+\|u_0'\|_{L^{\infty}}\right)\varepsilon.$$

averages can be determined by following fact

$$\int_{a}^{b} F\left(x, \frac{x}{\varepsilon}\right) dx - \int_{a}^{b} \left(\int_{0}^{1} F(x, y) dy\right) dx \leq C\varepsilon$$

if  $F(x, y) \in C^1(\mathbb{R} \times \mathbb{T})$  and a < b are real numbers.

- general optimal rate is  $\mathcal{O}(\sqrt{\varepsilon})$ .
- this involves handling chaotic behaviors.

The author would like to express his appreciation to his advisor, Hung V. Tran for giving him this interesting problem and for his invaluable guidance.

See the full list of references in [6].

- [1] I. Capuzzo-Dolcetta and H. Ishii. On the rate of convergence in homogenization of hamilton-jacobi equations. Indiana University Mathematics Journal, 50(3):1113--1129, 2001.
- [2] Lawrence C Evans. The perturbed test function method for viscosity solutions of nonlinear pde. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 111(3-4):359--375, 01 1989.
- [3] Lawrence C Evans. Periodic homogenization of certain fully nonlinear partial differential equations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 120:245 -- 265, 01 1992.
- [4] Pierre-Louis Lions, George Papanicolaou, and Srinivasa RS Varadhan. Homogenization of hamilton-jacobi equations. Unpublished preprint, 1986.
- [5] H. Mitake, H. V. Tran, and Y. Yu. Rate of convergence in periodic homogenization of Hamilton-Jacobi equations: the convex setting. ArXiv e-prints, December 2018.
- [6] Son N. T. Tu. *arXiv e-prints*, page arXiv:1808.06129, Aug 2018.

# **Sketch of the proof**

 $s \in (0, \varepsilon^{-1}t_0).$  $(\eta_{\varepsilon}(s)) = r$ for all

: among all  $\eta_{\varepsilon}(\cdot)$  solve (E-L) with energy r .

• r > 0, by the conservation of energy the solutions  $\eta_{\varepsilon}$  can be determined by ODEs, and their

# Some remarks

1. For the one dimension case, the remaining question is to find the optimal rate for general coercive H (i.e. nonconvex H). It was conjectured by H. Mitake, H. V. Tran and Y. Yu that the

2. Although it is very reasonable to believe that the optimal convergence rate  $\mathcal{O}(\varepsilon)$  is not achievable in general, an example with fractional convergence rate has not been found since

# cknowledgement

# References

Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension.