Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application

Son Tu

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu

Boston-Keio-Tsinghua Workshop 2024: Differential Equations, Dynamical Systems and Applied Mathematics

May 31, 2024

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-28-0) 1 / 29 and 1 / 29

 QQ

イロト イ母 トイヨ トイヨト

1 [Introduction](#page-2-0)

2 [Homogenization](#page-7-0)

- ³ [Rate of convergence](#page-12-0)
- **4** [Application to Ergodic Estimate](#page-25-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト 298 э

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) and application 2 / 29

1 [Introduction](#page-2-0)

2 [Homogenization](#page-7-0)

- **3** [Rate of convergence](#page-12-0)
- **4** [Application to Ergodic Estimate](#page-25-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト 298 э

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 3 / 29 (3) 49

[Introduction](#page-2-0) [Homogenization](#page-7-0) Rate Rate of Convergence [Application to Ergodic Estimate](#page-25-0)
 Convergence Application Convergence Application Convergence Convergence Convergence Convergence Convergence Con

イロメ イ押メ イヨメ イヨメー

 QQ

Ergodic estimate

 \blacksquare Given $\mathbb{F}\in\mathcal{C}(\mathbb{T}^n)$ and $\xi=(\xi_1,\xi_2\dots,\xi_n)$ be a non-resonant vector, i.e., $\xi\cdot\kappa\neq0$ for $\kappa \in \mathbb{Z}^n \backslash \{0\}$, then for $f(x) = \mathbb{F}(\xi x)$ in \mathbb{R}

$$
\lim_{T\to\infty}\frac{1}{T}\int_0^T\mathbb{F}(\xi x)\,dx=\mathfrak{M}(f):=\int_{\mathbb{T}^n}\mathbb{F}(x)\,dx.
$$

 \bullet If $\mathbb F$ is unbounded, then what about

$$
\lim_{T \to \infty} \frac{1}{T} \int_0^T \frac{dx}{\mathbb{F}(\xi x)} = \mathcal{M}(f^{-1}) := \int_{\mathbb{T}^n} \frac{dx}{\mathbb{F}(x)}
$$

given that $x \mapsto \frac{1}{F(\xi x)}$ is well-defined in \R ?

8 Rate of convergence? Example (result from our work): $\mathbb{F}(x_1, x_2) = (2 - \sin(2\pi x_1) - \sin(2\pi x_2))^{1/2}$ for $\mathbf{x} = (x_1, x_2) \in \mathbb{T}^2$, then

$$
\left|\frac{1}{\mathcal{T}}\int_0^{\mathcal{T}}\frac{dx}{\mathbb{F}(\xi x)}-\int_{\mathbb{T}^2}\frac{dx}{\mathbb{F}(x)}\right|\leq \frac{C}{\mathcal{T}^{1/6}}\qquad\textrm{if }\frac{\xi_2}{\xi_1}\textrm{ badly approximable}.
$$

⁴ Consequence from homogenization of Hamilton–Jacobi equation

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) and application 4 / 29

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

Viscosity solutions - Definition

Let $\Omega \subset \mathbb{R}^n$ be open, bounded, we consider the fully nonlinear PDE

$$
F(x, u, Du, D^2u) = 0 \quad \text{in } \Omega.
$$

F is non-decreasing in u, non-increasing in D^2u (degenerate elliptic).

 \rightarrow No integration by parts, only maximum principle.

Subsolution: $\varphi \in \mathbb{C}^2$, $u - \varphi$ *max* at *x*: $F(x, u(x), D\varphi(x), D^2\varphi(x)) \leq 0$ **Supersolution:** $\psi \in \mathbb{C}^2$, $\mu - \psi$ min at x: $F(x, u(x), D\psi(x), D^2\psi(x)) \geq 0$

Viscosity solution is both subsolution and supersolution.

イロト イ母 トイヨ トイヨ トー

 QQ

 $→$ physically correct solution

 \rightarrow value function in optimal control theory

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 5 / 29 (29) 5 / 29

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

Vanishing viscosity - Eikonal equation

The minimal amount of time required to travel from a point to the boundary with constant cost 1 is model by

 $|u'(x)| = 1$ in (-1, 1) with $u(-1) = u(1) = 0$.

Infinitely many a.e. solutions, physically correct solution: $u(x) = 1 - |x|$.

Approximated equation with unique solution

$$
\begin{cases}\n\left|\left(u^{\varepsilon}\right)'\right| = 1 + \varepsilon(u^{\varepsilon})'' & \text{in } (-1, 1), \\
u^{\varepsilon}(-1) = u^{\varepsilon}(1) = 0.\n\end{cases}
$$

Vanishing viscosity

$$
u^{\varepsilon}(x) = 1 - |x| + \varepsilon \left(e^{-1/\varepsilon} - e^{-|x|/\varepsilon} \right) \to u(x)
$$

K ロ ト K 何 ト K ヨ ト K ヨ ト

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 6 / 20 minutes 6 / 29

[Introduction](#page-2-0) **Introduction** [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) **[Application to Ergodic Estimate](#page-25-0)**

MOOO COOO COOO COOO COOOO COOO COOO

イロト イ押 トイヨト イヨト ニヨー

 QQ

Optimal control theory - An infinite horizontal example

Let U be a compact metric space. A *control* is a Borel measurable map α : $[0, \infty) \mapsto U$. We are given:

> $\int b = b(x, a) : \overline{\Omega} \times U \to \mathbb{R}^n$ velocity vector field $f = f(x, a) : \overline{\Omega} \times U \to \mathbb{R}$ running cost.

For $x \in \mathbb{R}^n$ and a control $\alpha(\cdot)$, let $y^{x,\alpha}(t)$ solves

 $\dot{y}(t) = b(y(t), \alpha(t)), \quad t > 0, \quad \text{and} \quad y(0) = x$

Question. Minimize the cost functional (*λ* ≥ 0)

$$
u(x) = \inf_{\alpha(\cdot)} \int_0^\infty e^{-\lambda s} f(y^{x,\alpha}(s), \alpha(s)) ds.
$$

Define $H(x, p) = \sup_{y \in H} (-b(x, y) \cdot p - f(x, y))$ then

$$
\lambda u(x) + H(x, Du(x)) = 0
$$
 in \mathbb{R}^n

assuming that $u \in C^{\infty}$ (using optimality or dynamic programming principle). However the value function is usually not smooth!

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 7 / 29 $\frac{1}{2}$ / 29

1 [Introduction](#page-2-0)

² [Homogenization](#page-7-0)

- **3** [Rate of convergence](#page-12-0)
- **4** [Application to Ergodic Estimate](#page-25-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト 298 э

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 8 / 29 (29) $\frac{8}{29}$

[Introduction](#page-2-0) [Homogenization](#page-7-0) Rate [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)
Convergence Application Rate of Convergence Application Convergence Convergence Convergence Convergence Conver
Convergence and Convergenc

Homogenization

In 1987, Lions, Papanicolaous and Varadhan [\[Lions-Papanicolaou-Varadhan'86\]](#page-28-1) proved the homogenization result for a periodic, coercive Hamiltonian (possibly nonconvex)

$$
\begin{cases} u_t^{\varepsilon} + H\left(\frac{x}{\varepsilon}, Du^{\varepsilon}\right) = 0 & \text{in } \mathbb{T}^n \times \mathbb{R}^n \\ u^{\varepsilon}(x, 0) = u_0(x) & \text{in } \mathbb{T}^n. \end{cases}
$$

As $\varepsilon \to 0^+$, $u^{\varepsilon} \to u$ and u solves

$$
\begin{cases} u_t + \overline{H}(Du) = 0 & \text{in } \mathbb{T}^n \times \mathbb{R}^n \\ u(x, 0) = u_0(x) & \text{in } \mathbb{T}^n. \end{cases}
$$

 $\overline{H}(p)$ is the unique constant such that the ergodic (cell) problem can be solve

$$
H(x, p + Dv(x)) = \overline{H}(p) \quad \text{in } \mathbb{T}^n.
$$

 $\overline{H}(p)$ is called:

Son Tu

- \bullet effective Hamiltonian
- **2** ergodic constant
- \bullet additive eigenvalue of H

⁴ *α*-function in dynamical system

イロト イ母 トイラ トイラトー

 QQ

- **6** Máne[']s critical value
- \bullet . . .

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) and application 9 / 29

 0.8 0.6 0.4 0.2

 \circ

 $0₂$ 0.4 0.6 0.8

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

Homogenization - Example

In 1D, if

$$
H(x,p)=\frac{|p|^2}{2}+V(x),
$$

where

$$
V(x) = \begin{cases} 2x & x \in \left[0, \frac{1}{2}\right], \\ -2x + 2 & x \in \left[\frac{1}{2}, 1\right]. \end{cases}
$$

Then

Son Tu

$$
|\rho|=\frac{2\sqrt{2}}{3}\left[\left(\overline{H}(\rho)+1\right)^{\frac{3}{2}}-\overline{H}(\rho)^{\frac{3}{2}}\right].
$$

Then \overline{H} takes the form

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 10 $/ 29$ / 29

э

 298

• Introduce $y = \frac{x}{\varepsilon}$ as a fast variable, $x = \varepsilon y$ is a slow variable.

• Ansatz:
$$
u^{\varepsilon}(x, t) = u^{0}(x, y, t) + \varepsilon u^{1}(x, y, t) + \varepsilon^{2} u^{2}(x, y, t) + \dots
$$

• Plug in the equation $u_t + H(\frac{x}{\varepsilon}, Du) = 0$

$$
u_t^0(x, y, t) + H\left(y, D_x u^0(x, y, t) + \varepsilon^{-1} D_y u^0(x, y, t) + D_y u^1(x, y, t)\right) = 0.
$$

•
$$
D_y u^0 = 0
$$
, i.e., $u^0 = u^0(x, t)$ independent of y

$$
H\left(y,\boxed{D_xu^0(x,t)}+D_yu^1(x,y,t)\right) = \boxed{-u_t^0(x,t)}
$$

Ergodic or cell problem (fox a fixed (x, t))

$$
H\left(y,\boxed{p}+D_yu^1(y)\right)=\boxed{\overline{H}(p)}
$$

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 11 / 29 (11 / 29

Son Tu

 QQ

イロト イ押 トイラト イラトー

イロト イ母 トイヨ トイヨ トー

 QQ

Homogenization

• The above ansatz gives

$$
u^{\varepsilon}(x,t) \approx u^{0}(x,t) + \varepsilon u^{1}\left(\frac{x}{\varepsilon}\right) + \mathcal{O}(\varepsilon^{2}).
$$

• This means in homogenization as $\varepsilon \to 0$ then $u^\varepsilon \to u^0.$

 $\bullet\;\; \mathsf{v}=\mathsf{u}^1$ is a corrector

$$
u^{\varepsilon}(x,t)=u(x,t)+\varepsilon v\left(\frac{x}{\varepsilon};Du(x,t)\right).
$$

where

$$
H(x, p + Dv(x; p)) = \overline{H}(p).
$$

Solution v is not unique (up to adding a constant).

If v is bounded then (the expected optimal rate)

$$
|u^{\varepsilon}-u|=\mathcal{O}(\varepsilon).
$$

• Via doubling variable method: can prove the convergence, but not the expansion.

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 12 / 29 (29)

1 [Introduction](#page-2-0)

2 [Homogenization](#page-7-0)

- ³ [Rate of convergence](#page-12-0)
- **4** [Application to Ergodic Estimate](#page-25-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト 298 э

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 13 / 29 (13 / 29

This received quite a lot of attention in the past twenty years. Assume: $x \mapsto H(x, p)$ is Lipschitz locally in p

- \bullet [\[Capuzzo-Dolcetta-Ishii'01\]](#page-28-2): $\mathcal{O}(\varepsilon^{1/3})$, PDE method, nonconvex and multi-scale $H(x, \frac{x}{\varepsilon}, Du^{\varepsilon}) \to \overline{H}(x, Du)$. : many works use this method
- \bullet $\mathcal{O}(\varepsilon^{1/2})$ if there is a Lipschitz selection $p \mapsto v(\cdot,p)$ of the cell problem

$$
H(x, p + Dv(x; p)) = \overline{H}(p).
$$

Convex Hamiltonian

Li

- $\mathcal{O}(\varepsilon)$ in 1D [\[Mitake-Tran-Yu'19\]](#page-28-3) and [\[Tu'18\]](#page-28-4) for 1D multi-scale.
- Conditional $\mathcal{O}(\varepsilon)$ under smoothness assumption of \overline{H} [\[Mitake-Tran-Yu'19\]](#page-28-3). first group utilized optimal control, optimal curve and metric distance
- Optimal rate O(*ε*) [\[Tran-Yu'21\]](#page-28-5). Burago Lemma and the metric distance.
- \bullet $\mathcal{O}(\varepsilon^{1/2})$ for multi-scale using Burago Lemma [\[Han-Jang'23\]](#page-28-6).
- [\[Armstrong-Cardaliaguet-Souganidis'14\]](#page-28-7): followed [\[Capuzzo-Dolcetta-Ishii'01\]](#page-28-2), $\mathbb{O}(\varepsilon^{1/8})$ for i.i.d, an abstract modulus $\omega(\varepsilon)$ for the almost periodic (PDE method).

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A \cup B$

• For $f \in \mathrm{BUC}(\mathbb{R}^n)$, we way it is almost periodic if $\{f(\cdot+z): z \in \mathbb{R}^n\}$ is relatively compact in $\mathrm{BUC}(\mathbb{R}^n)$.

periodic : $x \mapsto H(x, p)$ is \mathbb{Z}^n periodic almost-periodic : $\{H(\cdot + z, \cdot) : z \in \mathbb{R}^n\}$ is relatively compact in $\mathrm{BUC}(\mathbb{R}^n \times B_R(0)).$

• In one-dimensional case, for examle

$$
H(x,p) = \frac{|p|^2}{2} - V(x), \qquad V(x) = 2 - \sin(2\pi x) - \sin(2\pi \sqrt{2}x).
$$

• Quasi-periodic potential in 1D: $x \in \mathbb{R}$

Son Tu

 $V(x) = F(\xi x)$ where $F \in C^k(\mathbb{T}^k)$, $\xi \in \mathbb{R}^k$ is nonresonant.

The corrector is replaced by almost corrector [\[Ishii'00\]](#page-28-8)

$$
\overline{H}(p)-\delta\leq H(y,p+Dv_{\delta}(y;p))\leq \overline{H}(p)+\delta.
$$

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 15 / 15 / 29

イロト イ押 トイヨ トイヨ トー ヨ

Almost periodic function in 1D

First studied by Bohr (1926):

• For *ε >* 0, *τ* is an *ε*-period, if

 $|f(x + \tau) - f(x)| < \varepsilon$ for all $x \in \mathbb{R}$.

We say $E(\varepsilon, f) = \{ \tau \in \mathbb{R} : |f(x + \tau) - f(x)| < \varepsilon \}$ the set of all ε -periods.

• $f \in AP(\mathbb{R})$ if for $\varepsilon > 0$, there exists l_{ε} such that, for every $a \in \mathbb{R}$

 $[a, a + l_{\varepsilon}] \cap E(\varepsilon, f) \neq \emptyset$ any interval of length l_{ε} has an ε -period

イロト イ押 トイラト イラトー

- We say l*^ε* is an inclusion interval length of E(*ε,* f).
- **Mean value property** If $f \in AP(\mathbb{R})$

$$
\lim_{T\to\infty}\frac{1}{T}\int_0^T f(x)dx=\mathcal{M}(f).
$$

• If $f(x) = F(\xi x)$ is quasi-periodic, then

$$
\lim_{T\to\infty}\frac{1}{T}\int_0^T f(x)dx=\mathcal{M}(f)=\int_{\mathbb{T}^n}F(x)\,dx.
$$

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Introduction](#page-2-0) [Homogenization](#page-7-0) **Rate of Convergence** [Application to Ergodic Estimate](#page-25-0)
Convergence Application Convergence Application Convergence Convergence Convergence Convergence Convergence Co

 QQ

Convergence to the mean value

If f is periodic of period 1, then $\mathcal{M}(f) = \int_0^1 f(x) dx$, and

$$
\left|\frac{1}{\mathcal{T}}\int_0^{\mathcal{T}}f(x)\,dx-\mathcal{M}(f)\right|\leq \left(\int_0^1f(x)dx\right)\frac{1}{\mathcal{T}}.
$$

Key ingredient for periodic homogenization rate $\mathcal{O}(\varepsilon)$ in 1D [\[Mitake-Tran-Yu'19,](#page-28-3) [Tu'18\]](#page-28-4).

• (Almost-periodic) For every *ε >* 0

$$
\left|\frac{1}{T}\int_0^T f(x)\,dx-\mathcal{M}(f)\right|\leq \varepsilon+2\|f\|_{L^\infty(\mathbb{R})}\frac{l_\varepsilon(f)}{T}.
$$

Need an estimate of $l_{\varepsilon}(f)$ with respect to ε , but good as only L^{∞} is needed.

• (Quasi-periodic) If $f(x) = \mathbf{F}(\xi x)$ and $\mathbf{F} \in H^s(\mathbb{T}^n)$ for $s > \frac{n}{2} + \sigma_{\xi}$ then

$$
\left|\frac{1}{T}\int_0^T \mathbb{F}(\xi x)\ dx - \int_{\mathbb{T}^n} \mathsf{F}(x)\ dx\right| \leq \frac{C(n,s)\|\mathsf{F}\|_{H^s(\mathbb{T}^n)}}{T}.
$$

Here *σ^ξ* is a Diophantine condition of *ξ*:

$$
\xi \cdot \kappa \geq \frac{C}{|\kappa|^{\sigma}} \qquad \forall \ \kappa \in \mathbb{Z}^n.
$$

Need higher regularity, not applicable for some pote[ntia](#page-15-0)l[s.](#page-17-0)

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 17 / 29 17 / 29

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

Diophantine Approximations

For almost periodic f

$$
\left|\frac{1}{T}\int_0^T f(x)\,dx-\mathcal{M}(f)\right|\leq \varepsilon+2\|f\|_{L^\infty(\mathbb{R})}\frac{l_\varepsilon(f)}{T}.
$$

For quasi-periodic $f(x) = \mathbf{F}(\xi x)$ with $\mathbf{F} \in C^{0,\alpha}(\mathbb{T}^n)$

• [\[Nai96\]](#page-28-9) $n = 2$, badly approximable (null set)

$$
I_{\varepsilon}(f)\leq C\varepsilon^{\frac{-1}{\alpha}}
$$

² [\[Ryn98\]](#page-28-10) almost every *n*-frequencies

$$
I_{\varepsilon}(f) \leq C \varepsilon^{-\frac{n-1}{\alpha}} |\log(\varepsilon)|^{3(n-1)}
$$

Son Tu Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 18 / 29 / 29

 Ω

イロト イ母 トイヨ トイヨ トー

[Introduction](#page-2-0) [Homogenization](#page-7-0) **Rate of Convergence** [Application to Ergodic Estimate](#page-25-0)
COOOC COOOC COOOC COOOC COOOC COOOC COOOC COOO

Rate of convergence in 1D almost periodic

Theorem (Hu-Tu-Zhang '24): In 1D with H is convex, coercive $(\frac{1}{2}|\rho|^2$ for simplicity) $H(x, p) = \frac{|p|^2}{2}$ $V(x) = V(x),$ $V(x) = V(\xi x), V \in C(\mathbb{T}^n), V \ge 0.$ There is $C(n, \alpha, \xi, V)$ such that $u^{\varepsilon}(x,t) - u(x,t) \geq$ $\sqrt{ }$ J \mathcal{L} $\mathbb{V}^{1/2} \in H^s(\mathbb{T}^n), s > n/2 + \sigma_{\xi},$ $-C\varepsilon^{\frac{\alpha}{\alpha+n-1}}|\log(\varepsilon)|^{3(n-1)}$ for a.e. $\xi, \mathbb{F} \in C^{\alpha}(\mathbb{T}^n)$, $-C\varepsilon^{\frac{\alpha}{\alpha+1}}$ $n=2, \xi$ badly approximable. If $\overline{H}\in \mathcal{C}^{1,\beta}(\mathbb{R})$ then $u^{\varepsilon}(x,t) - u(x,t) \leq$ $\sqrt{ }$ \int \overline{a} $C\varepsilon^{\frac{\beta}{\beta+1}}$ $\qquad \qquad \mathbb{V}^{1/2} \in H^s(\mathbb{T}^n), s > n/2 + \sigma_{\xi},$ $C \varepsilon^{\frac{\beta}{\beta+1}} \frac{\alpha}{\alpha+n-1} |\log(\varepsilon)|^{3(n-1)}$ for a.e. $\xi, \mathbb{F} \in C^{\alpha}(\mathbb{T}^n)$, $C \varepsilon^{\frac{\beta}{\beta+1}} \frac{\alpha}{\alpha+1}$ n = 2, *ξ* badly approximable.

Place in the literature

- \bullet First algebraic rate for almost periodic setting (only abstract modulus rate, PDE method in the literature).
- **2** the relation between how irrational [of](#page-17-0) ξ and the reg[ular](#page-17-0)i[ty](#page-19-0) of \mathbb{Y} \mathbb{Y} \mathbb{Y} [is](#page-19-0) [i](#page-11-0)[n](#page-12-0)[tr](#page-24-0)[ic](#page-25-0)a[te](#page-12-0)[.](#page-24-0) QQ

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

Case study

Examples
$$
\mathbb{V}(x, y) = (2 - \sin(2\pi x) - \sin(2\pi y))^{\gamma}
$$
 and $\xi = (1, \sqrt{2})$.

$$
H(x,p)=\frac{|p|^2}{2}-\left(2-\sin(2\pi x)-\sin(2\pi\sqrt{2}x)\right)^{\gamma}, \qquad \gamma>0.
$$

Consider the homogenization problem in 1D

$$
\begin{cases}\nu_t^{\varepsilon} + H\left(\frac{x}{\varepsilon}, Du^{\varepsilon}\right) = 0 & \longrightarrow \begin{cases}\nu_t + \overline{H}(Du) = 0\\u^{\varepsilon}(x, 0) = u_0(x)\end{cases}\n\end{cases}
$$

Then

$\gamma > 2$	$-C\varepsilon \leq u^{\varepsilon} - u \leq C\varepsilon^{\tau}, \quad \tau = \frac{\gamma - 2}{3\gamma - 2}$
$\gamma = 2$	$-C\varepsilon \leq u^{\varepsilon} - u \leq \frac{C}{ \log(\varepsilon) }$
$\gamma < 2$	$u^{\varepsilon} - u \geq \begin{cases} -C\varepsilon^{\frac{\gamma}{\gamma + 1}}, & \gamma \in (0, 1), \\ -C\varepsilon^{1/2}, & \gamma \in [1, 2]. \end{cases}$

Son Tu Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 20 / 29

э

 298

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

$$
\boxed{\frac{v_p(t)}{t} = 0 \left(\frac{1}{t^{\alpha}}\right) \text{ as } t \to \infty} \leq u^{\varepsilon} - u \leq \left\{\begin{matrix} \text{shape and regularity of }\overline{H} \\ \text{averaging optimal path}: \\ \left|\frac{\eta(t)}{t} - \overline{H}'(p)\right| \leq 0 \left(\frac{1}{t^{\beta}}\right). \end{matrix}\right.
$$

0 Lower bound is easy: decay rate of correctors and Hopf-Lax formula

Son Tu

$\mathcal{M}(f)$

² Upper bound is harder: long time average of characteristic (calibrated curve)

 $\mathfrak{M}(f^{-1})$

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 21 / 29 / 29

 298

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Shape of \overline{H}

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

To compute $\overline{H}(p)$, we look for a sublinear solution v_p to

$$
H(x, p + Dv_p(x)) = \mu
$$

Assume $\overline{H}(p) = \mu$, we look for p instead

$$
\frac{|p + v'(x)|^2}{2} - \mathbb{V}(\xi x) = \mu \quad \Longrightarrow \quad v(x) = \int_0^x \sqrt{2(\mu + \mathbb{V}(x))} \, dx - px
$$

Then

$$
\frac{v(x)}{x} = \frac{1}{x} \int_0^x \sqrt{2(\mu + \mathbb{V}(x))} \, dx - p \to 0
$$

With

Son Tu

$$
p_{\mu} = \mathfrak{M}(\sqrt{2(\mu + \mathbb{V})}) = \int_{\mathbb{T}^n} \sqrt{2(\mu + \mathbb{V}(\mathbf{x}))} \ d\mathbf{x}.
$$

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 22 / 29

 298

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

イロト イ母 トイラ トイラトー

 QQ

Sketch of the proof - 1

• If
$$
H(x, p) = \frac{|p|^2}{2} + V(x)
$$
 then the Lagrangian $L(x, v) = \frac{|v|^2}{2} - V(x)$.

 \bullet Let $(x, t) = (0, 1)$, use optimal control formula (action minimizing)

$$
A^{\varepsilon}[\eta] = \varepsilon \int_0^{\varepsilon^{-1}} L(\eta(s), -\dot{\eta}(s)) \; ds + u_0 \left(\varepsilon \eta(\varepsilon^{-1}) \right)
$$

and

$$
u^{\varepsilon}(0,1)=\inf_{\eta(0)=0}A^{\varepsilon}[\eta]
$$

³ A minimizer has conservation of energy

$$
\frac{|\dot{\eta}(s)|^2}{2} + V(\eta(s)) = r
$$

A Rewrite

Son Tu

$$
u^{\varepsilon}(0,1)=\inf_r\left(\inf_{\eta_r}A^{\varepsilon}[\eta_r]\right)
$$

 \bullet For each energy r, averaging each terms of the action with rate

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 23 / 29

Sketch of the proof - 2

0 Lower bound is easy

$$
A^{\varepsilon}[\eta_r] \geq u(0,1) + \inf_{|p| \geq p_0} \varepsilon v_p(\eta(\varepsilon^{-1}))
$$

@ Lower bound correspond to decay rate of corrector $\frac{\nu_\rho(x)}{|x|}$ as $|x| \to \infty$, i.e., convergence rate to the mean value

$$
\left|\frac{1}{\mathcal{T}}\int_0^{\mathcal{T}} \mathbb{V}^{1/2}(\xi x) d\mathbf{x} - \mathbb{M}(\mathbb{V}^{1/2})\right| \leq \frac{C}{\mathcal{T}^{\theta}}
$$

3 For $|p| > p_0$

Son Tu

$$
\left|\frac{v_p(t)}{t}\right| \leq \left|\frac{1}{t}\int_0^t \mathbb{F}_{\mu}(\xi x) dx - \mathfrak{M}(\mathbb{F}_{\mu})\right| \leq \left\{\frac{C|t|^{-1}}{C|t|^{-\frac{\alpha}{\alpha+n-1}}|\log(t)|^{3(n-1)}}
$$

- The first case happens for $\mathbb{F} \in H^s(\mathbb{T}^n)$ (*s* > *n*/2 + *σ*_ξ)
• The second case happens for a.e. *ξ* ∈ ℝ^{*n*} with $\mathbb{F} \in C^{0,\alpha}(\mathbb{T}^n)$.
-

イロト イ母 トイラ トイラトー QQ

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 24 / 29

Sketch of the proof - 3

- ¹ Upper bound is harder, obtainable when negative energy r *<* 0 does not play a role, i.e., $\overline{H} \in \mathcal{C}^1$
- **2** Look at

$$
A^{\varepsilon}[\eta_r] = (\varepsilon \eta_r(\varepsilon^{-1})) \underbrace{\left(\frac{1}{\eta_r(\varepsilon^{-1})} \int_0^{\eta_r(\varepsilon^{-1})} \sqrt{2(r - \mathbb{V}(\xi \times))} \, dx\right)}_{p_r = \mathbb{M}(\sqrt{2(r - \mathbb{V})})} + u_0(\varepsilon \eta_r(\varepsilon^{-1}).
$$

6 The difficult term is

$$
\varepsilon \eta_r(\varepsilon^{-1}) \qquad \longleftrightarrow \qquad \frac{\eta(t)}{t} \to q \in \partial \overline{H}
$$

This is the large time average of calibrated curve to a rotation vector.

 \bullet Difficult to do directly in a uniform way as $r\to 0^+$, by Euler-Lagrange equation

$$
\frac{1}{\varepsilon\eta(\varepsilon^{-1})}=\frac{1}{\eta(\varepsilon^{-1})}\int_0^{\eta(\varepsilon^{-1})}\frac{dx}{\sqrt{2(r-\mathbb{V}(\xi x))}}\to\mathcal{M}\left(\frac{1}{\sqrt{2(r-\mathbb{V})}}\right)
$$

 \bullet Using Hamilton–Jacobi equation: uniform in $r\rightarrow 0^+$

$$
\overline{H} \in C^{1,\beta} \qquad \Longrightarrow \qquad \left| \frac{\eta_r(t)}{t} - \overline{H}'_+(p_r) \right| \leq C \varepsilon^{\frac{\beta}{1+\beta}}.
$$

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 25 / 29

1 [Introduction](#page-2-0)

2 [Homogenization](#page-7-0)

- **3** [Rate of convergence](#page-12-0)
- **4** [Application to Ergodic Estimate](#page-25-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト 298 э

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 26 / 29

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

 298

э

Application to ergodic estimate

For
$$
\mathbb{V}(x_1, x_2) = (2 - \sin(2\pi x_1) - \sin(2\pi x_2))^{\gamma}
$$
 and $\xi = (\xi_1, \xi_2)$ with $\frac{\xi_2}{\xi_1}$ is badly approximable, $H(x, p) = \frac{|p|^2}{2} - \mathbb{V}(\xi x)$, then

$$
\left|\frac{\eta(t)}{t} - \overline{H}'(\rho)\right| \leq \begin{cases} C|t|^{-\frac{\gamma-2}{3\gamma-2}} & \gamma > 2 \\ C|t|^{-\frac{2-\gamma}{2(2+\gamma)}} & \gamma < 2 \\ C|\log(t)|^{-1} & \gamma = 2. \end{cases}
$$

Consequently

$$
\left|\frac{1}{\mathcal{T}}\int_0^{\mathcal{T}}\frac{dx}{\mathbb{V}^{1/2}(\xi x)}-\int_{\mathbb{T}^2}\frac{dx}{\mathbb{V}(x)}\right|\leq C\left(\frac{1}{\mathcal{T}}\right)^{\frac{2-\gamma}{2(2+\gamma)}}\qquad\gamma<2
$$

while

$$
\frac{1}{T} \int_0^T \frac{dx}{\sqrt{1/2}(\xi x)} \ge \begin{cases} C\left(\frac{1}{T}\right)^{\frac{\gamma-2}{3\gamma-2}} & \gamma > 2\\ \frac{C}{|\log(T)|} & \gamma = 2. \end{cases}
$$

Son Tu Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 27 / 29

イロト イ母 トイヨ トイヨ トー

 QQ

For zero energy
$$
r = 0
$$

$$
\overline{H} \in \mathcal{C}^{1,\alpha} \longrightarrow \varepsilon^{\frac{\alpha}{1+\alpha}} \longrightarrow \varepsilon^{\frac{\alpha(\alpha+1)}{\alpha(\alpha+1)+1}}
$$

We have

$$
\left|\frac{\eta_0(t)}{t}\right| \le \left(\frac{1}{|t|}\right)^\tau \qquad \text{where } \tau = \frac{(\gamma - 2)(3\gamma - 2)}{(\gamma - 2)(3\gamma - 2) + 4\gamma^2}.
$$

If this holds uniformly for η_r as $r \to 0^*$ then we can improve the rate of homogenization

- \bullet Nonsmooth \overline{H} ?
- **3** Gaps in the quantitative estimate using two different methods?

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu Boston-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY [Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 28 / 29

[Introduction](#page-2-0) [Homogenization](#page-7-0) [Rate of convergence](#page-12-0) [Application to Ergodic Estimate](#page-25-0)

References I

[Capuzzo-Dolcetta-Ishii'01] I. Capuzzo-Dolcetta and H. Ishii. On the Rate of Convergence in Homogenization of Hamilton-Jacobi Equations. Indiana University Mathematics Journal, 50(3):1113–1129, 2001.

[Capuzzo-Dolcetta-Lions'90] I. Capuzzo-Dolcetta and P.-L. Lions. Hamilton-Jacobi Equations with State Constraints. Transactions of the American Mathematical Society, 318(2):643–683, 1990.

[Han-Jang'23] Y. Han and J. Jang.

Rate of convergence in periodic homogenization for convex Hamilton-Jacobi equations with multiscales. Nonlinearity, 36(10):5279–5297, 2023.

[Ishii'00] H. Ishii.

Son Tu

Almost periodic homogenization of Hamilton-Jacobi equations.

In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), pages 600–605. World Sci. Publ., River Edge, NJ, 2000.

[Lions-Papanicolaou-Varadhan'86] P.-L. Lions, G. Papanicolaou, and S. R. Varadhan. Homogenization of Hamilton-Jacobi equations. Unpublished preprint, 1986.

[Mitake-Tran-Yu'19] H. Mitake, H. V. Tran, and Y. Yu. Rate of convergence in periodic homogenization of Hamilton-Jacobi equations: the convex setting. Arch. Ration. Mech. Anal., 233(2):901–934, 2019.

[Tran-Yu'21] H. V. Tran and Y. Yu.

Optimal convergence rate for periodic homogenization of convex Hamilton-Jacobi equations. arXiv:2112.06896 [math], Dec. 2021. arXiv: 2112.06896.

[Tu'18] S. N. T. Tu.

Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension. Asymptot. Anal., 121(2):171–194, 2021.

[Armstrong-Cardaliaguet-Souganidis'14] Scott N. Armstrong, Pierre Cardaliaguet, and Panagiotis E. Souganidis. Error Estimates and Convergence Rates for the Stochastic Homogenization of Hamilton-Jacobi Equations. Journal of the American Mathematical Society, 27(2):479–540, 2014. Publisher: American Mathematical Society.

[Cooperman'21] William Cooperman. A near-optimal rate of periodic homogenization for convex

Hamilton-Jacobi equations. Arch. Ration. Mech. Anal., 245(2):809–817, 2022.

[Nai96] Koichiro Naito. Fractal dimensions of almost periodic attractors. Ergodic Theory and Dynamical Systems, 16(4):791–803, 1996.

[Ryn98] Bryan P. Rynne. The fractal dimension of quasi-periodic orbits. Ergodic Theory Dynam. Systems, 18(6):1467–1471, 1998.

イロト イ母 トイラト イラト

Michigan State Univeristy joint with Jianlu Zhang and Bingyang Hu BOSTON-KEIO-TSINGHUA WORKSHOP 2024: DIFFERENTIAL EQUATIONS, DY

[Rate of convergence for quasi-periodic homogenization of Hamilton–Jacobi equation and application](#page-0-0) 29 / 29

 Ω