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Introduction

The system’s state at time t is defined by
the values of the generalized coordinates.
This is represented by a point in the
”configuration space”. The motion is
characterized by the path traced out by
this point in configuration space.

•Lagrangian mechanics. L = L(x, v) (x-position, v-velocity) is the
Lagrangian. x solves the Euler-Lagrange equations

− d

dt
(DvL(x, ẋ)) = DxL(x, ẋ). (1)

By principle of least action, x minimizes the action
∫ T

0 L(x(t), ẋ(t))dt.
•Hamiltonian mechanics. p = DvL(x, v) (momentum), and H = L∗.

Let p(t) = DvL(x(t), ẋ(t)) then (x,p) solves{
ẋ = DpH(x,p)
ṗ = −DxH(x,p).

and d

dt
H(x(t),p(t)) = 0. (2)

These are the Hamilton’s equation and conservation of energy.
•Hamilton-Jacobi PDE. Let u(P, x) solves

H(x,Dxu) = H(P ) then
{

Ẋ = DH(P)

Ṗ = 0.
(3)

via the canonical change of variable (p, x) 7→ (P,X): H is the effective
Hamiltonian, uniquely defined [2] (via homogenization).

Figure 1: H where H(x, p) = 1
2|p|

2 − (1 + |2x− 1|) on T1 × R

•Stochastic effective Hamiltonian In PDE language (motivated from
Homogenization [2]), we concern the ergodic problem

H(x, p +Du(x)) = H(p) in Tn (4)
and its stochastic version [1]

H(x, p +Duε(x))− ε∆uε = H
ε
(p) in Tn. (5)

Contributions

1.Representation and regularity of Hε
, H .

2.On the semi-classical limit Hε → H as ε → 0+:
|Hε −H| = O(ε)

for convex Hamiltonians.

1 Mather measures

Stochastic minimizing measures [1] extends classical Mather measures [3, 4].
A probability measure µ ∈ P(Tn × Rn) is called a holonomic measure if∫
Tn×Rn

v dµ < ∞,

∫
Tn×Rn

(
v ·Dφ(x)− ε∆φ(x)

)
dµ = 0 ∀ φ ∈ C2(Tn).

Let C(ε) be the set of holonomic measures, then

−H
ε
(0) = inf

µ∈C(ε)

∫
Tn×Rn

L dµ. (6)

Stochastic Mather measures are mesures that minimize (6).

2 Regularity

Theorem 1 ([5]). Assume convexity, then ε 7→ Hε(0) is C1−smooth in
ε > 0

d

dε
H

ε
(0) = −

∫
Tn×Rn

∆uε(x) dµ for all µ ∈ M0(ε). (7)

M0(ε) is the set of Mather measures associated with (5) with p = 0, and
uε solves (5).

Theorem 2 ([5]). Assume convexity, then for ε = 0, p 7→ H(p) has one-
sided directional derivatives in any direction ζ ∈ Rn and

Dξ+H(p) = max
µ∈Mp(0)

∫
Tn×Rn

v · ξ dµ(x, v)

Dξ−H(p) = min
µ∈Mp(0)

∫
Tn×Rn

v · ξ dµ(x, v).
(8)

•Mp(0): Mather measures associated to (x, ξ) 7→ H(x, p + ξ).
• If Mp(0) = {µ} is a singleton, then p 7→ H(p) is differentiable at p

with DH(p) =
∫
Tn×Rn v dµ(x, v).

•Theorem 2 relies on rather weak assumptions: H ∈ C0(Tn × Rn) is
both coercive and convex.

3 Rate of convergence

Theorem 3. Assume convexity, then ε 7→ H
ε
(0) is uniformly Lipschitz

for ε ∈ [0, 1]. Consequently

|Hε
(0)−H(0)| = O(ε). (9)

•For general nonconvex setting: |Hε
(0)−H(0)| = O(ε1/2).

•For special H(x, p) = 1
2|p|

2 + V (x), the rate (9) is known. We
generalized this to all convex Hamiltonians.

4 Conclusions || Discussion

The proof technique relies on the scaling structure of Mather measures and
has been applied to various domain perturbation problems, starting with [6].
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