

MICHIGAN STATE UNIVERSITY DEPARTMENT OF MATHEMATICS

OISS 8th Annual Scholar Showcase Office of International Students and Scholars

On the regularity of stochastic effective Hamiltonian Son Tu, *♠* Jianlu Zhang *♦*

*♠*tuson@msu.edu, Michigan State University,

*♦*jellychung1987@gmail.com, Chinese Academy of Sciences

Introduction

• Lagrangian mechanics. $L = L(x, v)$ (*x*-position, *v*-velocity) is the Lagrangian. **x** solves the Euler-Lagrange equations

The system's state at time *t* is defined by the values of the generalized coordinates. This is represented by a point in the "configuration space". The motion is characterized by the path traced out by this point in configuration space.

via the canonical change of variable $(p, x) \mapsto (P, X)$: *H* is the *effective Hamiltonian*, uniquely defined [2] (via homogenization).

$$
-\frac{d}{dt}\left(D_v L(\mathbf{x}, \dot{\mathbf{x}})\right) = D_x L(\mathbf{x}, \dot{\mathbf{x}}).
$$
 (1)

By *principle of least action*, **x** minimizes the action \int_0^T $\overline{0}$ $L(\mathbf{x}(t), \dot{\mathbf{x}}(t))dt$.

• **Hamiltonian mechanics**. $p = D_v L(x, v)$ (momentum), and $H = L^*$. Let $\mathbf{p}(t) = D_v L(\mathbf{x}(t), \dot{\mathbf{x}}(t))$ then (\mathbf{x}, \mathbf{p}) solves

Stochastic minimizing measures [1] extends classical Mather measures [3, 4]. A probability measure $\mu \in \mathcal{P}(\mathbb{T}^n \times \mathbb{R}^n)$ is called a *holonomic measure* if

$$
\begin{cases}\n\dot{\mathbf{x}} = D_p H(\mathbf{x}, \mathbf{p}) & \text{and} \qquad \frac{d}{dt} H(\mathbf{x}(t), \mathbf{p}(t)) = 0. \qquad (2) \\
\dot{\mathbf{p}} = -D_x H(\mathbf{x}, \mathbf{p}).\n\end{cases}
$$

These are the *Hamilton's equation* and *conservation of energy*.

•**Hamilton-Jacobi PDE**. Let *u*(*P, x*) solves

$$
H(x, D_x u) = \overline{H}(P) \quad \text{then} \quad \begin{cases} \dot{\mathbf{X}} = D\overline{H}(\mathbf{P}) \\ \dot{\mathbf{P}} = 0. \end{cases} \tag{3}
$$

- If $\mathcal{M}_p(0) = {\mu}$ is a singleton, then $p \mapsto \overline{H}(p)$ is differentiable at p with $\overline{DH}(p) = \int_{\mathbb{T}^n \times \mathbb{R}^n} v \ d\mu(x, v)$.
- Theorem 2 relies on rather weak assumptions: $H \in C^0(\mathbb{T}^n \times \mathbb{R}^n)$ is both coercive and convex.

(4)

. (5)

for *convex* Hamiltonians.

1 Mather measures

$$
\int_{\mathbb{T}^n\times\mathbb{R}^n} v\ d\mu < \infty,\quad \int_{\mathbb{T}^n\times\mathbb{R}^n} \big(v\cdot D\varphi(x)-\varepsilon\Delta\varphi(x)\big)\ d\mu=0\quad \forall\ \varphi\in C^2(\mathbb{T}^n).
$$

Let $\mathcal{C}(\varepsilon)$ be the set of holonomic measures, then

$$
-\overline{H}^{\varepsilon}(0) = \inf_{\mu \in \mathcal{C}(\varepsilon)} \int_{\mathbb{T}^n \times \mathbb{R}^n} L \, d\mu. \tag{6}
$$

Stochastic Mather measures are mesures that minimize (6).

2 Regularity

Theorem 1 ([5]). Assume convexity, then $\varepsilon \mapsto H^{\varepsilon}(0)$ is C^1 *-smooth in ε >* 0 *d dε H ε* $(0) = -$ ∫ $\mathbb{T}^n \times \mathbb{R}^n$ $\Delta u^{\varepsilon}(x) d\mu$ *for all* $\mu \in \mathcal{M}_0(\varepsilon)$. (7) $\mathcal{M}_0(\varepsilon)$ *is the set of Mather measures associated with* (5) with $p = 0$, and

u ε solves (5)*.*

Theorem 2 ([5]). Assume convexity, then for $\varepsilon = 0$, $p \mapsto \overline{H}(p)$ has one*sided directional derivatives in any direction* $\zeta \in \mathbb{R}^n$ and

$$
D_{\xi+} \overline{H}(p) = \max_{\mu \in \mathcal{M}_p(0)} \int_{\mathbb{T}^n \times \mathbb{R}^n} v \cdot \xi \, d\mu(x, v)
$$

$$
D_{\xi-} \overline{H}(p) = \min_{\mu \in \mathcal{M}_p(0)} \int_{\mathbb{T}^n \times \mathbb{R}^n} v \cdot \xi \, d\mu(x, v).
$$

(8)

• $\mathcal{M}_p(0)$: Mather measures associated to $(x,\xi) \mapsto H(x,p+\xi)$.

3 Rate of convergence

Theorem 3. *Assume convexity, then* $\varepsilon \mapsto H$ *ε* (0) *is uniformly Lipschitz* $for \varepsilon \in [0, 1]$ *. Consequently*

$$
|\overline{H}^{\varepsilon}(0) - \overline{H}(0)| = \mathcal{O}(\varepsilon). \tag{9}
$$

- •For general nonconvex setting: *|H ε* $(0) - \overline{H}(0) = \mathcal{O}(\varepsilon^{1/2}).$
- For special $H(x,p) = \frac{1}{2}$ 2 $|p|^2 + V(x)$, the rate (9) is known. We generalized this to all convex Hamiltonians.

4 Conclusions || Discussion

The proof technique relies on the scaling structure of Mather measures and has been applied to various domain perturbation problems, starting with [6].

References

- [1]Diogo Aguiar Gomes. A stochastic analogue of Aubry-Mather theory. *Nonlinearity*, 15(3):581, March 2002.
- [2]Pierre-Louis Lions, George Papanicolaou, and Srinivasa RS Varadhan. Homogenization of hamilton-jacobi equations. *Unpublished preprint*,

[3] John N. Mather. Action minimizing invariant measures for positive definite Lagrangian systems. *Mathematische Zeitschrift*, 207(1):169–207, May 1991.

[4]Ricardo Mañé. Generic properties and problems of minimizing measures of Lagrangian systems. *Nonlinearity*, 9(2):273, March 1996.

[5] Son Tu and Jianlu Zhang. On the regularity of stochastic effective Hamiltonian, January 2024. arXiv:2312.15649 [math].

[6] Son N. T. Tu. Vanishing discount problem and the additive eigenvalues on changing domains. *Journal of Differential Equations*, 317:32–69, 2022.