Errata

Rate of convergence for periodic homogenization of convex Hamilton–Jacobi equations in one dimension

Son N.T. Tu

Lemma 2.8 Let $\mathcal{V} \in C^2(\mathbb{R}, [0, \infty))$ with $\min_{x \in \mathbb{R}} \mathcal{V}(x) = 0$. There exists a constant L > 0 such that $|\mathcal{V}'(x)| \leq L\sqrt{\mathcal{V}(x)}$ for all $x \in \mathbb{R}$. As a consequence, $x \mapsto \sqrt{\mathcal{V}(x)}$ is Lipschitz in \mathbb{R} .

Remark 1. There is an error in the published version of this Lemma in [1] where the author assumes only $\mathcal{V} \in C^2([0,1],[0,\infty))$ with $\min_{x \in \mathbb{R}} \mathcal{V}(x) = 0$ and $\mathcal{V}(0) = \mathcal{V}(1)$. A counter example is $\mathcal{V}(x) = x(1-x)$, which fails to have 0 derivative at 0 and thus $\mathcal{V}'(0) = 1$ while $\mathcal{V}(0) = 0$. The author is grateful to his advisor, H. Tran for pointing out this error and his suggestion on improving the Lemma.

References

[1] S.N.T. Tu, Rate of convergence for periodic homogenization of convex Hamilton-Jacobi equations in one dimension, Asymptotic Analysis 121, 2 (2021), 171–194.