Errata

HAN, Y., AND TU, S. N. T. Remarks on the Vanishing Viscosity Process of State-Constraint Hamilton–Jacobi Equations. *Applied Mathematics & Optimization 86*, 1 (June 2022), 3 Yuxi Han and Son N. T. Tu July 31, 2025

We made a typo in the statement of [1, Lemma 18], which led to the lower rate $\mathcal{O}(\varepsilon^{1/p})$ as recorded in [1, Corollary 3]. The corrected version yields a better rate $\mathcal{O}\left(\varepsilon^{1/\left(p-\frac{1}{2}\right)}\right)$. The proof in [1, Lemma 18] was written for the corrected version.

The correct statement is $\|f_{\kappa} - f\|_{L^{\infty}(\Omega)} \leq C\kappa^2$, not $\|f_{\kappa} - f\|_{L^{\infty}(\Omega)} \leq C\kappa$ as stated in [1, Lemma 18].

Lemma 18. Assume $f \in C^2(\overline{\Omega})$ such that f = 0 and Df = 0 on $\partial\Omega$. For all $\kappa > 0$ small enough, there exists $f_{\kappa} \in C^2_c(\Omega)$ such that

$$\|f_{\kappa} - f\|_{L^{\infty}(\Omega)} \le C\kappa^{2}$$
 and $\|D^{2}f_{\kappa}\|_{L^{\infty}(\Omega)} \le C$

where C is independent of κ .

Later, in Corollary 3, the use of the incorrect statement led to a slower rate $O(\varepsilon^{1/p})$. Here, we correct it and provide the improved rate that Corollary 3 should have obtained.

Proof of Corollary 3. Let $\mathfrak{u}_{\kappa}^{\varepsilon} \in \mathrm{C}^2(\Omega) \cap \mathrm{C}(\overline{\Omega})$ be the solution to $(\mathrm{PDE}_{\varepsilon})$ and \mathfrak{u}_{κ} be the solution to (PDE_0) with f replaced by f_{κ} , respectively. It is clear that

$$0 \le u^{\varepsilon}(x) - u_{\kappa}^{\varepsilon}(x) \le C\kappa^2$$
 for $x \in \Omega$

and

$$0 \le u(x) - u_{\kappa}(x) \le C\kappa^2$$
 for $x \in \Omega$.

Therefore,

$$u^{\varepsilon}(x) - u(x) \leq 2C\kappa^2 + \left(u^{\varepsilon}_{\kappa}(x) - u_{\kappa}(x)\right).$$
 (57)

By Theorem 2 and Remark 8, as $f_{\kappa} \in C_c^2(\Omega)$ with a uniform bound on $D^2 f_{\kappa}$, we have

$$u_{\kappa}^{\varepsilon}(x) - u_{\kappa}(x) \leqslant \frac{\nu C_{\alpha} \varepsilon^{\alpha+1}}{d(x)^{\alpha}} + C\left(\left(\frac{\varepsilon}{\kappa}\right)^{\alpha+1} + \left(\frac{\varepsilon}{\kappa}\right)^{\alpha+2}\right) + 4nC\varepsilon, \qquad p < 2$$

$$u_{\kappa}^{\epsilon}(x) - u_{\kappa}(x) \leqslant \nu \epsilon \log \left(\frac{1}{d(x)}\right) + C\left(\left(\frac{\epsilon}{\kappa}\right) + \left(\frac{\epsilon}{\kappa}\right)^{2}\right) + 4nC\epsilon, \qquad p = 2$$

for some constant C independent of $\kappa.$ Choose $\kappa=\epsilon^{\gamma}$ with $\gamma\in(0,1).$ Then (57) becomes

$$u^{\epsilon}(x)-u(x)\leqslant C\epsilon^{\frac{2\gamma}{}}+C\epsilon+\frac{C\epsilon^{\alpha+1}}{d(x)^{\alpha}}+C\epsilon^{(1-\gamma)(\alpha+1)}, \qquad \qquad \mathfrak{p}<2,$$

$$u^{\epsilon}(x) - u(x) \leqslant C\epsilon^{\textcolor{red}{2}\gamma} + C\epsilon + C\epsilon |\log d(x)| + C\epsilon^{1-\gamma}, \qquad \qquad p = 2.$$

If p = 2, the optimal choice of γ is given by $2\gamma = 1 - \gamma$, i.e., $\gamma = \frac{1}{3}$, which yields a rate of $O(\epsilon^{2/3})$, an improvement over the $O(\sqrt{\epsilon})$ estimate in Theorem 1.

If p < 2, by setting $2\gamma = (1 - \gamma)(\alpha + 1)$, we can get the best value of γ , that is, $\gamma = \frac{\alpha + 1}{\alpha + 3}$, and we obtain an improved estimate of $0\left(\epsilon^{\frac{2(\alpha + 1)}{\alpha + 3}}\right)$, noting that $\frac{2(\alpha + 1)}{\alpha + 3} = \frac{1}{p - 1/2} > \frac{1}{p} > \frac{1}{2}$.

References

[1] HAN, Y., AND TU, S. N. T. Remarks on the Vanishing Viscosity Process of State-Constraint Hamilton-Jacobi Equations. Applied Mathematics & Optimization 86, 1 (June 2022), 3.