
MATH 714: COMPUTATIONAL MATH I
FINAL PROJECT.

SOME FINITE DIFFERENCE METHODS

FOR STATIC HAMILTON–JACOBI EQUATIONS

SON TU

December 20, 2017

Contents

1 Hamilton-Jacobi equations and viscosity solutions 1

2 Monotone schemes for static equations 2
2.1 Existence, uniqueness and comparison principle for schemes 3
2.2 The Lax-Friedrich scheme . 5
2.3 Implementation in one dimension . 6
2.4 Implementation in two dimensions . 8

3 Lax-Friedrich sweeping: A faster scheme 11
3.1 Implementation in one dimension . 12
3.2 Implementation in two dimensions . 13

4 MATLAB CODE 14
4.1 MATLAB code for 1D case . 14
4.2 MATLAB code for 2D case . 16

1 Hamilton-Jacobi equations and viscosity solutions

We are interested in solving
¨

H(x ,∇u(x)) = f (x) for x ∈ Ω,

u(x) = g(x) for x ∈ ∂Ω
(PDE)

where Ω is an open set the Hamiltonian H is a nonlinear Lipschitz continuous function. We
introduce the function F : Ω×R×Rd −→ R which we define as

F(x , r, p) =

¨

H(x , p)− f (x) x ∈ Ω,

r − g(x) x ∈ ∂Ω.

We say u ∈ C1(Ω) is a solution of (PDE) if F[u](x) = F(x , u(x),∇u(x)) = 0 for all x ∈ Ω.
However we won’t always have classical solutions which motives the definition of viscosity
solutions. They were introduced in [1], via the upper and lower semicontinuous envelopes
of a function

u∗(x) = lim sup
y−→x

u(y) and u∗(x) = lim inf
y−→x

u(y)

It’s easy to see that for F ∗ and F∗ we have

F ∗ (x , r, p) = F ∗(x , r, p) = H(x , p)− f (x) x ∈ Ω,

F∗(x , r, p) =min{H(x , p), r − g(x)} x ∈ ∂Ω,

F ∗(x , r, p) =max{H(x , p), r − g(x)} x ∈ ∂Ω.

Definition 1 (Viscosity solution). An upper (lower) semicontinuous function u is a viscos-
ity subsolution (supersolution) of (PDE) if for every φ ∈ C1(Ω) such that u − φ has a local
maximum (minimum) at x ∈ Ω then F∗(x , u(x),∇φ(x)) ≤ 0 (F ∗(x , u(x),∇φ(x)) ≥ 0). A
function u is a viscosity solution if it is both a subsolution and supersolution.

We assume that (PDE) satisfies a comparison principle: if u ∈ USC(Ω) is a subsolution and
v ∈ LSC(Ω) is a supersolution of (PDE), then u≤ v on Ω. The proof for this principle based
on the main technical argument doubling variables in the viscosity solutions theory [1].

A typical example is the following Eikonal’s equation
¨

|u′(x)| = 1 on (−1, 1),
u(1) = u(−1) = 0.

(1)

This equation has no C1 solution, but it
has infinitely many a.e solution. The
unique viscosity solution is the biggest
one in the following picture. The theory
of viscosity solution ensures that the
solution has u′ cannot change from
negative to positive at any point (corner
from below is not allowed) and u′

changes its sign from positive to
negative at only one point.

Page 1 of 20

An approximation scheme is a family of functions parametrized by h ∈ R+

Fh : Ω×R× L∞(Ω) −→ R

which we write as Fδ(x , r, u(·)). Given a function u ∈ L∞(Ω) we write

Fh[u](x) = Fh(x , u(x), u(·)). (PDEh)

The function uh is a solution of the scheme Fh if Fh[uh](x) = 0 for all x ∈ Ω. The idea of
solving (PDE) numerically is

1. Construct a scheme Fh such that there exists a stable solution Fh[uh] = 0 to (PDEh).
The existence is usually guaranteed by Banach fixed point theorem.

2. Under certain mild requirements, one can show that uh −→ u where u is the unique
viscosity solution of (PDE).

2 Monotone schemes for static equations

Let’s consider the time dependent equation

vt(x , t) +H(x , v(x), v′(x)) = f (x) for x ∈ (a, b), t ∈ (0,∞),
v(x , 0) = v0(x) for x ∈ (a, b),
v(x , t) = g(x) for x ∈ {a, b}, t ∈ [0,∞).

with Lipschitz Hamiltonian H : R× R −→ R. Assume that as t −→ ∞, the solution of
this problem approaches a stable or equilibrium state v(x , t) −→ u(x), then we recover the
static problem

¨

H(x , u(x), u′(x)) = f (x) for x ∈ (a, b),
u(x) = g(x) for x ∈ {a, b}.

We use the uniform mesh for discretization x i = i∆x where i = 0,1, 2, . . . , m + 1, i.e.,
∆x = b−a

m+1 . The corresponding grid function is a vector defined as grid points ui = u(x i) for
i = 0, . . . , m+ 1 with m unknowns are u1, . . . , um. Discretizing the derivative v′(x) by

u′(x i)≈
Du+i + Du−i

2
where Du+i =

ui+1 − ui

∆x
, Du−i =

ui − ui−1

∆x

are forward and backward Euler approximation of the first derivative. The first order nu-
merical Hamiltonian is of the form ÒH

�

x i, ui, Du+i , Du−i
�

which is a Lipschitz continuous func-
tion with respect to all of its arguments and is consistent with the original Hamiltonian in
the sense that ÒH(x , u, p, p) = H(x , u, p). From the numerical Hamiltonian, we define the
following scheme

F i[u]≡ F (ui, ui − ui+1, ui − ui−1) = H
�

ui,−
ui − ui+1

∆x
,
ui − ui−1

∆x

�

− fi (i = 1,2, . . . , m)

is a function of p+1 = ui − ui+1 and p−1 = ui − ui−1 (we suppress the explicit dependence
on ∆x and x i). Such a scheme is monotone if each component F i is nondecreasing with
respect to each variable ui, ui − ui+1 and ui − ui−1. In particular, within our notations, the
scheme F(u, p+1, p−1) is monotone if H(u,α,β) is non-increasing in α and non-decreasing
in β and u, denoted by F(↑,↑,↑)∼ H(↑,↓,↑).

Page 2 of 20

2.1 Existence, uniqueness and comparison principle for schemes

When talking about a grid function, we always mean u= (u1, . . . , um), where we suppressed
the indexes u0, um+1 which are fixed by the boundary conditions.

Definition 2.

• The finite different scheme F is Lipschitz continuous if there exists a constant K such that
for all i = 1,2, . . . , m and p = (p1, p2, p3) and q = (q1, q2, q3) we have

�

�F i(p)− F i(q)
�

�≤ K‖p− q‖∞.

• The explicit Euler map with time step ρ of the differential equation du
d t + F[u] = 0 is

Sρ : Rm −→ Rm maps u 7−→ u−ρF[u].

• (Nonlinear CFL condition) For F be a Lipschitz continuous, monotone scheme with Lips-
chitz constant K, the nonlinear CFL condition for the Euler map Sρ is

ρK ≤ 1. (CFL)

• Given u, v ∈ Rm, we define

u∨ v =max{u, v}, u+ =max{u, 0}, u− =min{u, 0}

component-wise and u≤ v means ui ≤ vi for i = 0, 1,2, . . . , m, m+ 1.

• A finite difference scheme is proper if there exists δ > 0 such that for i = 1,2, . . . , m and
for all x ∈ R2 and x0, y0 ∈ R then

x0 ≤ y0 =⇒ F i(x0, x)− F i(y0, x)≤ δ(x0 − y0).

Theorem 3 (Comparison principle for schemes). Let F be a proper, monotone scheme. If
F[u]≤ F[v] then v ≤ v. In particular solutions to the scheme F[·] = 0 are unique.

Proof. Suppose that u≤ v is not true, there exists an index i ∈ {1,2, . . . , m} such that

ui − vi = max
j=1,...,m

{u j − v j}> 0 =⇒ ui − u j ≥ vi − v j for all j = 1,2, . . . , m

here we understood u0 = v0, um+1 = vm+1. Since F(↑,↓,↑), we obtain

F i[u] = F
�

ui, ui+1 − ui, ui − ui−1

�

≥ F
�

ui, vi+1 − vi, vi − vi−1

�

(by monotonicity)

> F
�

vi, vi+1 − vi, vi − vi−1

�

= F i[v] (since F is proper)

which is a contradiction to F[u]≤ F[v]. Uniqueness follows obviously.

Theorem 4 (Ordered Lipschitz continuity property). Let F be a Lipschitz continuous,
monotone with Lipschitz constant K. Then for i = 1,2, . . . , m and x , y ∈ R3 we have

−K

(x − y)−

∞ ≤ F i(x)− F i(y)≤ K

(x − y)+

∞ .

Page 3 of 20

Proof. By monotonicity, we have

F i(x)− F i(y)≤ F i (x ∨ y)− F i(y)≤ K‖x ∨ y − y‖∞ = K‖(x − y)+‖∞

and the other side can be obtained similarly.

Theorem 5 (Monotonicity of the Euler map). Let F be a Lipschitz continuous, monotone
with Lipschitz constant K, Then the Euler map Sρ is monotone provided (CFL) holds.

Proof. Suppose u≤ v, for an index i ∈ {1, . . . , m} we have

S i
ρ
[u]− S i

ρ
[v] = ui − vi +ρ

�

F i (vi, vi − vi+1, vi − vi−1)− F i (ui, ui − ui+1, ui − ui−1)
�

≤ ui − vi +ρK

 (vi − ui, vi − ui + ui+1 − vi+1, vi − ui + ui−1 − vi−1)
+

︸ ︷︷ ︸

~α

∞
.

Observe that u≤ v implies vi − ui ≥ 0, vi+1 − ui+1 ≥ 0, vi−1 − ui−1 ≥ 0 and

~α=
�

vi − ui,max
�

vi − ui − (vi+1 − ui+1) , 0
	

,max
�

vi − ui − (vi−1 − ui−1) , 0
	

�

which implies that

‖~α‖∞ ≤ vi − ui =⇒ S i
ρ
[u]− S i

ρ
[v]≤ (1−ρK)(ui − vi)≤ 0

by the (CFL) condition.

Theorem 6 (The Euler map is a contraction in l∞). Let F be a Lipschitz continuous, proper
monotone scheme. Then the Euler map is a strict contraction in Rm equipped with the max
norm, provided (CFL) holds.

Proof. Assume ui ≥ vi, we first show the lower bound

S i
ρ
[u]− S i

ρ
[v] = ui − vi −ρ

�

F i
�

ui, ui − ui+1, ui − ui−1

�

− F i
�

vi, vi − vi+1, vi − vi−1

��

≥ ui − vi −ρK

 (vi − ui, vi − ui + ui+1 − vi+1, vi − ui + ui−1 − vi−1)
+

∞

= ui − vi −ρK

�

ui − vi, ui − vi − (ui+1 − vi+1) , ui − vi − (ui−1 − vi−1)
�−

︸ ︷︷ ︸

~β

∞

where we use the fact that for w ∈ Rm then

−(−w)− = w+ =⇒ ‖(−w)−‖∞ = ‖w+‖∞.

Observe that ui ≥ vi implies

~β =
�

0, min
�

ui − vi − (ui+1 − vi+1) , 0
	

, min
�

ui − vi − (ui−1 − vi−1) , 0
	

�

.

which implies that for j = i + 1 or j = i − 1 then

‖ ~β‖∞ ≤
�

�ui − vi − (u j − v j)
�

�≤ |ui − vi|+ ‖u− v‖∞ = ui − vi + ‖u− v‖∞.

Thus

S i
ρ
[u]− S i

ρ
[v]≥ (ui − vi)−ρK

�

(ui − vi) + ‖u− v‖∞
�

= (1−ρK)(ui − vi)−ρK‖u− v‖∞ ≥ −ρK‖u− v‖∞

Page 4 of 20

since ui ≥ vi. For the upper bound we proceed as following

S i
ρ
[u]− S i

ρ
[v] = ui − vi −ρ

�

F i(ui, ui − ui+1, ui − ui−1)− F i(vi, ui − ui+1, ui − ui−1)
�

+ρ
�

F i(vi, vi − vi+1, vi − vi−1)− F i(vi, ui − ui+1, ui − ui−1)
�

≤ (1−ρδ)(ui − vi) +ρ
�

F i(vi, vi − vi+1, vi − vi−1)− F i(vi, ui − ui+1, ui − ui−1)
�

︸ ︷︷ ︸

γ

by monotonicity. Now by Lipschitz property of F i we have

γ≤ K

�

(ui+1 − vi+1)− (ui − vi), (ui−1 − vi−1)− (ui − vi)
�+

∞

≤ K
�

�(u j − v j)− (ui − vi)
�

�≤ K
�

(u j − v j)− (ui − vi)
�

≤ K
�

‖u− v‖∞ − (ui − vi)
�

for j = i − 1 or j = i + 1. Thus we obtain the upper bound

S i
ρ
[u]− S i

ρ
[v]≤ (1−ρδ)(ui − vi) +ρK

�

‖u− v‖∞ − (ui − vi)
�

≤ (1−ρδ−ρK)(ui − vi) +ρK‖u− v‖∞ ≤ (1−ρδ)‖u− v‖∞

if we choose ρ small such that ρδ,ρK ≤ 1
2 . This prove our estimate

Sρ[u]− Sρ[v]

∞ ≤ r‖u− v‖∞

where r =min{ρK , 1−ρδ}.

Combine all of these fact above, we obtain the following theorem about the existence of
solution to the scheme.

Theorem 7 (Existence of solution to the scheme). A proper, Lipschitz continuous mono-
tone scheme has a unique solution.

Proof. Since Sρ is a strict contraction on Rm provided (CFL) holds, the iterates of the Euler
map converge to the unique fixed point, which is a solution for arbitrary initial data, by the
Banach’s fixed point theorem.

An important remark: if a scheme is not proper, we can consider instead F[u] + εu. By
taking ε small enough, we can assume the scheme is proper without loss of generality.

Theorem 8 (Crandall-Lions, [2]). Monotone schemes are stable and convergent (to the
viscosity solution) in the l∞ norm, with the error estimate is at least half order O(

p
∆x).

Here we mean by stability in l∞ norm that the Euler map u 7−→ Sρ[u] is non-expansive in
l∞ norm, i.e., ‖Sρ[u]‖∞ ≤ ‖u‖∞.

2.2 The Lax-Friedrich scheme

We consider the problem
¨

H(x , u′(x)) = f (x) for x ∈ (a, b),
u(x) = g(x) for x ∈ {a, b}.

Page 5 of 20

with H : R2 −→ R is Lipshitz continuous with constant K . The Lax-Friedrich scheme is the
one associated with the Lax-Friedrich numerical Hamiltonian

Hh
LF[u] (x) = ÒH(p

+, p−) = H
�

x ,
p+ + p−

2

�

−
1
2
σx

�

p+ − p−
�

where σx to be chosen such that this scheme is monotone, p = ux and p± are the corre-
sponding forward and backward differences approximations of ux , and h = ∆x is the step
size. Within our notation, the Lax-Friedrich scheme is monotone if H is non-increasing in
p+ and non-decreasing in p−. Indeed, if p+1 ≥ p+2 then

ÒH(p+1 , p−)− ÒH(p+2 , p−) = H

�

x ,
p+1 + p−

2

�

−H

�

x ,
p+2 + p−

2

�

−
1
2
σx

�

p+1 − p+2
�

≤
K −σx

2

�

p+1 − p+2
�

≤ 0

provided σx ≥ K . The other direction in p− can be done similarly. Define ∆+ui = ui − ui+1

and ∆−ui = ui − ui−1 then

�

�F
�

∆−ui,∆
+ui

�

− F
�

∆−vi,∆
+vi

��

�=

�

�

�

�

H
�

x i,
∆−ui −∆+ui

2∆x

�

−H
�

x i,
∆−vi −∆+vi

2∆x

�

�

�

�

�

≤
K
∆x

��

�

�

�

∆−ui −∆+ui

2

�

�

�

�

+

�

�

�

�

∆−vi −∆+vi

2

�

�

�

�

�

≤
K
∆x

�

∆−ui,∆
+ui

�

−
�

∆−vi,∆
+vi

�

∞ .

Thus the nonlinear (CFL) condition concludes that the Euler map Sρ[u] = u − ρF[u] is
monotone if

ρ ≤
∆x
K

.

Theorem 8 concludes that the Lax-Friedrich schemes work well. Let’s illustrate it by writing
down explicitly the update formula

H
�

x i,
ui+1 − ui

2∆x

�

−
σx

2

�

ui+1 − 2ui + ui−1

∆x

�

= f (x i)

which results in the iteration formula (we don’t follow the Euler iteration, which is more
complicated)

unew
i =

∆x

σx

�

f (x i)−H

�

x i,
uold

i+1 − uold
i−1

2∆x

��

+
uold

i+1 + uold
i−1

2
. (2)

2.3 Implementation in one dimension

Example 2.1 (Classical Eikonal’s equation).
¨

|u′(x)| = 1 on (−1, 1),
u(1) = u(−1) = 0.

(Ex.2.1)

has a unique viscosity solution u(x) = 1− |x |.

Page 6 of 20

Here we choose σx = 1.001 and initial guess u0 = 0. Note that in this example, the solution
converges for anyσx ≥ 1, but in order to obtain the 1-order accuracy in l∞, we needσx > 1.

Grid points l∞ Errors l∞ Accuracy
64 0.1587× 10−4 −−−−
128 0.0787× 10−4 0.99986
256 0.0392× 10−4 0.99999
512 0.0196× 10−4 1.00000
1024 0.0098× 10−4 0.99980

Example 2.2 (Eikonal’s equation).
¨

|u′(x)| = 1+ cos x on (−2,2),
u(−2) = u(2) = 3− |2+ sin 2|.

(Ex.2.2)

has a unique viscosity solution u(x) = 3− |x + sin(x)|.

Here we choose σx = 1 and initial guess u0 = 0.

Grid points l∞ Errors l∞ Accuracy
64 0.0446 −−−−
128 0.0222 0.99374
256 0.0111 0.99531
512 0.0055 0.99645
1024 0.0028 0.99726

Example 2.3 (Eikonal’s equation).
¨

|u′(x)| = 1+ e|x | on (−2,2),
u(−2) = u(2) = 8− e2.

(Ex.2.3)

has a unique viscosity solution u(x) = 10− |x | − e|x |.

Here we choose σx = 1 and initial guess u0 = 0.

Grid points l∞ Errors l∞ Accuracy
64 0.1997 −−−−
128 0.0998 0.98866
256 0.0499 0.99152
512 0.0250 0.99351
1024 0.0125 0.99492

Example 2.4 (Hamilton-Jacobi equation with convex Hamiltonian).

|u′(x)|2 = ex on (−2,2),
u(−2) = −2e+ 20,

u(2) = 2e+ 16.

(Ex.2.4)

Page 7 of 20

This equation has a unique viscosity solution

u(x) =

¨

2e
x
2 − 4e−1 + 20 x ∈ [−2, x0],

−2e
x
2 + 4e+ 16 x ∈ [x0, 2].

where x0 = 2 ln
�

e+ e−1 − 1
�

.

Here we choose σx = 4.5 and the initial guess to be the linear function connecting two
initial data at −2 and 2. An easier choice is the sub-solution u0 ≡ 18, but we need the
artifical viscosity to be very huge to have convergence. Note that if we start from 0 the
solution won’t converge (requires bigger σx). This is a very sensitive case, we choose the
tolerant 10−9 in this case (not 10−12 as usual).

It is easy to see that the solution cannot have corner from below, and will have exactly one
corner from above, i.e., there exists x0 ∈ (−2, 2) such that u′ changes its sign from positive
to negative at x0. We obtain the exact solution from that argument.

Grid points l∞ Errors l∞ Accuracy
64 0.1143 −−−−
128 0.0589 0.94597
256 0.0300 0.95748
512 0.0151 0.96672
1024 0.0076 0.97364

Example 2.5 (Non-convex Hamiltonian). H(x , p) = cos(p)2 + |p|
¨

cos(u′(x))2 + |u′(x)| = cos(e−|x |)2 + e−|x | on (−2,2),
u(−2) = u(2) = e−2.

(Ex.2.5)

has a unique viscosity solution u(x) = e−|x |.

Here we choose σx = 2 and initial guess u0 = 0.

Grid points l∞ Errors l∞ Accuracy
64 0.1328 −−−−
128 0.1095 0.274169
256 0.0886 0.28959
512 0.0704 0.30300
1024 0.0540 0.32147

2.4 Implementation in two dimensions

We consider the problem
¨

H(x ,∇u(x)) = f (x) for (x , y) ∈ Ω= [0, 1]× [0,1],
u(x) = g(x) for (x , y) ∈ ∂Ω.

Page 8 of 20

with H : R4 −→ R is Lipshitz continuous with constant K . The Lax-Friedrich scheme is the
one associated with the Lax-Friedrich numerical Hamiltonian

Hh
LF[u] (x , y) = ÒH(p+, p−, q+, q−)

= H
�

x , y,
p+ + p−

2
,
q+ + q−

2

�

−
1
2
σx

�

p+ − p−
�

−
1
2
σy

�

q+ − q−
�

where σx ≥max
�

�

�

∂ H
∂ p

�

�

� and σy ≥max
�

�

�

∂ H
∂ q

�

�

� such that this scheme is monotone, p = ux and p±

are the corresponding forward and backward differences approximations of ux , q = uy and
q± are the corresponding forward and backward differences approximations of uy , with the
uniform mesh size. On each side we discretize x j = j∆x , where j = 0, 1,2, . . . , m+ 1 with
∆x = 1

m+1 . The m2 unknowns are ui j = u(x i, y j) where 1≤ i, j ≤ m. We look at the update
formula

H
�

x i, y j,
ui+1, j − ui−1, j

2∆x
,
ui, j+1 − ui, j−1

2∆y

�

−
σx

2

ui+1, j − 2ui, j + ui−1, j

∆y
−
σx

2

ui, j+1 − 2ui, j + ui, j−1

∆y
= f

�

x i, j

�

which results in the update formula:

ui, j =
�

σx

∆, x
+
σy

∆y

�−1 �

fi, j −H
�

x i, y j,
ui+1, j − ui−1, j

2∆x
,
ui, j+1 − ui, j−1

2∆y

�

+σx

ui+1, j + ui−1, j

2∆x
+σy

ui, j+1 + ui, j−1

2∆y

�

.

In case ∆x =∆y = h, we have

unew
i, j =

h
σx +σy

�

fi, j −H

�

x i, y j,
uold

i+1, j − uold
i−1, j

2h
,
uold

i, j+1 − uold
i, j−1

2h

��

+
σx

σx +σy

uold
i+1, j + uold

i−1, j

2
+

σy

σx +σy

uold
i, j+1 + uold

i, j−1

2
.

Remark 9. The method runs very slow in two dimensions. Smaller artificial viscosity makes
convergence faster, but if the solution is very singular then small artificial viscosity may break
the convergence.

Example 2.6 (Eikonal’s equation in two dimensions). H(x , p) = |p|=
Æ

p2
1 + p2

2.

¨

|∇u| = 1 in Ω= [−2, 2]× [−2, 2],
u = (2− |(x , y)|)

�

�

∂Ω
on ∂Ω.

(Ex.2.6)

has a unique viscosity solution u(x , y) = 2− ‖(x , y)‖2, starting with u0 = 0.

Here we choose σx = σy = 1+ 10−12 with initial guess u0 = 0.

Page 9 of 20

Figure 1: Approximated solutions with m= 16, 32,64,128, 256.

Grid points l∞ Errors l∞ Accuracy Iterations Elapsed time (s)
16 0.1393 −−−− 61 0.0547
32 0.0906 0.5930 100 0.3018
64 0.0558 0.6377 163 2.0774
128 0.0332 0.6726 276 14.4202
256 0.0193 0.7009 485 104.2492
512 0.0110 0.7244 885 794.0576

Example 2.7 (Eikonal’s equation in two dimensions). H(x , p) = |p|=
Æ

p2
1 + p2

2.

¨

|∇u(x , y)| =
p

(1− |x |)2 + (1− |y|)2 in Ω= [−1, 1]× [−1, 1],
u = 0 on ∂Ω.

(Ex.2.7)

has a unique viscosity solution u(x , y) = (1− |x |)(1− |y|).

Here we choose σx = σy = 1+ 10−12 with initial guess u0 = 0.

Page 10 of 20

Figure 2: Approximated solutions with m= 16, 32,64,128, 256.

Grid points l∞ Errors l∞ Accuracy Iterations Elapsed time (s)
16 0.0635 −−−− 60 0.0247
32 0.0371 0.7423 95 0.1221
64 0.0186 0.8550 154 0.8501
128 0.0090 0.9194 261 5.9737
256 0.0044 0.9512 465 44.0847
512 0.0022 0.9647 857 351.2299

3 Lax-Friedrich sweeping: A faster scheme

The idea of sweeping method is istead of updating at each step the new value by entire old
value, we keep updateing the new value at ui+1 by the new value of previous step ui. It is
similar to Gauss-Seidel iteration method.

Page 11 of 20

3.1 Implementation in one dimension

We consider the problem
¨

H(x , u′(x)) = f (x) for x ∈ (a, b),
u(x) = g(x) for x ∈ {a, b}.

with H : R2 −→ R is Lipshitz continuous with constant K , σx ≥
∂ H
∂ p as usual. The sweeping

formula is slightly different to the monotone one (2)

• Sweeping from the left to the right with i = 1,2, . . . , m:

utemp
i =

∆x

σx

�

f (x i)−H

�

x i,
uold

i+1 − utemp
i−1

2∆x

��

+
uold

i+1 + utemp
i−1

2
.

• Sweeping from the right to the left with i = m, m− 1, . . . , 1:

unew
i =

∆x

σx

�

f (x i)−H

�

x i,
unew

i+1 − utemp
i−1

2∆x

��

+
uold

new + utemp
i−1

2
.

Remark 10. The method is stable and convergent in l1 (around 2nd order with nice solution,
as the following Eikonal’s equation).

Example 3.1 (Classical Eikonal’s equation).
¨

|u′(x)| = 1 on (−1, 1),
u(1) = u(−1) = 0.

(Ex.3.1)

has a unique viscosity solution u(x) = 1− |x |.

Here we choose σx = 1 + e−12 and initial guess u0 = 0. Note that in this example, the
solution converges for any σx ≥ 1, but in order to obtain the 1-order accuracy in l1, we
need σx > 1.

Grid points l1 Errors l1 Accuracy
64 0.6192× 10−8 −−−−
128 0.1524× 10−8 1.99999
256 0.0378× 10−8 1.99999
512 0.0094× 10−8 1.99999
1024 0.0023× 10−8 1.99999

Remark 11. The method is stable and convergent in l1 only with 1st order for other examples
Ex.2.2,Ex.2.3 and Ex.2.4. But with Ex.2.5 it converges in l1 with order 0.65, twice faster than
the monotone scheme.

Example 3.2 (Non-convex Hamiltonian). H(x , p) = cos(p)2 + |p|
¨

cos(u′(x))2 + |u′(x)| = cos(e−|x |)2 + e−|x | on (−2,2),
u(−2) = u(2) = e−2.

(Ex.3.5)

has a unique viscosity solution u(x) = e−|x |.

Page 12 of 20

Here we choose σx = 2 and initial guess u0 = 0.

Grid points l1 Errors l1 Accuracy
64 0.1339 −−−−
128 0.0853 0.64355
256 0.0535 0.65548
512 0.0336 0.66148
1024 0.0211 0.66445

3.2 Implementation in two dimensions

We consider the problem
¨

H(x ,∇u(x)) = f (x) for (x , y) ∈ Ω= [0, 1]× [0,1],
u(x) = g(x) for (x , y) ∈ ∂Ω.

with H : R4 −→ R is Lipshitz with constant K . In case ∆x =∆y = h, we sweep 4 times:

• Sweeping i = 1, . . . , m, j = 1, . . . , m.

• Sweeping i = m, . . . , 1, j = 1, . . . , m.

• Sweeping i = 1, . . . , m, j = m, . . . , 1.

• Sweeping i = 1, . . . , m, j = m, . . . , 1.

Remark 12. The method runs faster comparing to the monotone scheme slow in two dimen-
sions with 2nd order of convergence in l1 norm.

Example 3.3 (Eikonal’s equation in two dimensions). H(x , p) = |p|=
Æ

p2
1 + p2

2.

¨

|∇u| = 1 in Ω= [−2, 2]× [−2, 2],
u = (2− |(x , y)|)

�

�

∂Ω
on ∂Ω.

(Ex.3.6)

has a unique viscosity solution u(x , y) = 2− ‖(x , y)‖2, starting with u0 = 0.

Here we choose σx = σy = 1+ 10−12 with initial guess u0 = 0.

Grid points l1 Errors l1 Accuracy Iterations Elapsed time (s)
16 0.0154 −−−− 10 0.0295
32 0.0039 1.8811 14 0.0517
64 0.0010 1.9146 21 0.2938
128 0.0002 1.9371 32 1.7249
256 0.0001 1.9526 59 12.3893
512 0.0000 1.9634 112 100.2518

Page 13 of 20

Example 3.4 (Eikonal’s equation in two dimensions). H(x , p) = |p|=
Æ

p2
1 + p2

2.

¨

|∇u(x , y)| =
p

(1− |x |)2 + (1− |y|)2 in Ω= [−1, 1]× [−1, 1],
u = 0 on ∂Ω.

(Ex.3.7)

has a unique viscosity solution u(x , y) = (1− |x |)(1− |y|).

Here we choose σx = σy = 1+ 10−12 with initial guess u0 = 0.

Grid points l1 Errors l1 Accuracy Iterations Elapsed time (s)
16 0.0076 −−−− 10 0.0206
32 0.0023 1.6707 14 0.0455
64 0.0006 1.7140 21 0.2714
128 0.0002 1.7536 33 1.7850
256 0.0000 1.7872 54 11.9170
512 0.0000 1.8150 95 96.0690

4 MATLAB CODE

4.1 MATLAB code for 1D case

1 function [XX sol Max_norm_error u_exact] = monotone1D(H,R,L,nx,A,B,sigma,
exact_sol,u_init)

2 u_old = B*ones(1,nx);
3 x_length = 2*L;
4 dx = x_length/(nx−1);
5 XX = −L:dx:L;
6 u_new = u_init(XX);
7 error = norm(u_old − u_new,Inf);
8 u_old(1) = exact_sol(−L); u_old(nx) = exact_sol(L);
9 u_new(1) = exact_sol(−L); u_new(nx) = exact_sol(L);

10 while error > 1.0000e−9 % 1.0000e−12
11 u_old = u_new;
12 for i = 2:(nx−1)
13 u_new(i) = dx/sigma*(R(XX(i)) − H(XX(i),(u_old(i+1) − u_old(i

−1))/(2*dx))) + 1/2*(u_old(i+1) + u_old(i−1));
14 end
15 error = norm(u_old − u_new,Inf);
16 end
17 u_exact = exact_sol(XX);
18 sol = u_new;
19 Max_norm_error = norm(sol − u_exact,Inf);
20 end

1 function [XX sol Max_norm_error u_exact] = sweeping1D(H,R,L,nx,A,B,sigma,
exact_sol,u_init)

2 u_old = B*ones(1,nx);

Page 14 of 20

3 x_length = 2*L;
4 dx = x_length/(nx−1);
5 XX = −L:dx:L;
6 u_new = u_init(XX);
7 error = dx*norm(u_old − u_new,1);
8 u_old(1) = exact_sol(−L); u_old(nx) = exact_sol(L);
9 u_new(1) = exact_sol(−L); u_new(nx) = exact_sol(L);

10 while error > 1.0000e−12 % 1.0000e−12
11 u_old = u_new; u_temp = u_new;
12 for i = 2:(nx−1)
13 u_temp(i) = dx/sigma*(R(XX(i)) − H(XX(i),(u_old(i+1) − u_temp(

i−1))/(2*dx))) + 1/2*(u_old(i+1) + u_temp(i−1));
14 end
15 for i = (nx−1):−1:2
16 u_new(i) = dx/sigma*(R(XX(i)) − H(XX(i),(u_new(i+1) − u_temp(

i−1))/(2*dx))) + 1/2*(u_new(i+1) + u_temp(i−1));
17 end
18 error = dx*norm(u_old − u_new,1);
19 end
20 u_exact = exact_sol(XX);
21 sol = u_new;
22 Max_norm_error = dx*norm(sol − u_exact,1);
23 end

1 clear all
2 close all
3 clc % Domain is [−L,L]
4 % % 1st example %%%
5 % L = 1;
6 % H = @(x,p) abs(p); % R = @(x) 1;
7 % exact_sol = @(x) 1 − abs(x);
8 % Upper_Bound = 1; Lower_Bound = 0;
9 % u_init = @(x) 0;

10 % sigma = 1+exp(−12);
11 % 2nd example %%%
12 % L = 2;
13 % H = @(x,p) abs(p); % R = @(x) 1+cos(x);
14 % exact_sol = @(x) 3−abs(x+sin(x));
15 % Upper_Bound = 3; Lower_Bound = 0;
16 % u_init = @(x) 0;
17 % sigma = 1+exp(−12);
18 % 3rd example %%%
19 % L = 2;
20 % H = @(x,p) abs(p); % R = @(x) 1+exp(abs(x));
21 % exact_sol = @(x) 10−abs(x)−exp(abs(x));
22 % Upper_Bound = 10; Lower_Bound = 0;
23 % u_init = @(x) 0; % sigma = 1;
24 % % 4th example %%
25 % L = 2;

Page 15 of 20

26 % H = @(x,p) p.^2; % R = @(x) exp(x);
27 % x0 = 2*log(exp(1)+exp(−1)−1);
28 % exact_sol = @(x) (x>=−2 & x<=x0).*(−2*exp(−1)+20 + 2*(exp(x/2)−exp(−1)))

+ (x>x0 & x<=2).*(2*exp(1)+16 + 2*(exp(1)−exp(x/2)));
29 % lambda = @(x) 1/2*(1−x./L);
30 % u_init = @(x) lambda(x).*exact_sol(−L) + (1−lambda(x)).*exact_sol(L);
31 % Upper_Bound = 23; Lower_Bound = 18;
32 % sigma = 4.5;
33 % 5th example %%%
34 L = 2;
35 H = @(x,p) cos(p).^2 + abs(p);
36 R = @(x) cos(exp(−abs(x))).^2 + exp(−abs(x));
37 exact_sol = @(x) exp(−abs(x));
38 Upper_Bound = 30; Lower_Bound = 0;
39 u_init = @(x) 0; sigma = 2+exp(−12);
40 % % Number of grid points
41 nx_vec = [64 128 256 512 1024];
42 for mesh = 1:length(nx_vec)
43 nx = nx_vec(mesh);
44 dx = 2*L/(nx−1);
45 %[XX sol norm_error(mesh) u_exact] = monotone1D(H,R,L,nx,Lower_Bound,

Upper_Bound,sigma,exact_sol,u_init);
46 [XX sol norm_error(mesh) u_exact] = sweeping1D(H,R,L,nx,Lower_Bound,

Upper_Bound,sigma,exact_sol,u_init);
47 figure(mesh)
48 hold on
49 plot(XX,sol,'b−−');
50 plot(XX,u_exact,'r');
51 hold off
52 ddx(mesh) = dx;
53 new_nx_vec(mesh) = nx_vec(mesh);
54 norm_error
55 newfigure = figure(mesh+5); % compute the order of accuracy
56 set(newfigure,'color','white');
57 loglog(ddx,abs(norm_error));
58 title('Graph of norm error against dx on log−log scale')
59 first_col = ones(length(new_nx_vec),1); second_col = log(ddx)';
60 AA = [first_col,second_col];
61 FF_accuracy = log(norm_error);
62 solution_accuracy = (AA'*AA)^(−1)*AA'*FF_accuracy';
63 K = solution_accuracy(1); p = solution_accuracy(2);
64 vpa([K,p])
65 end

4.2 MATLAB code for 2D case

Page 16 of 20

1 function [time_need iteration XX YY sol Max_norm_error u_exact] =
monotone2D(H,R,L,nx,A,B,sigma_x,sigma_y,exact_sol)

2 u_old = B*ones(nx,nx);
3 u_init = A*ones(nx,nx);
4 x_length = 2*L;
5 y_length = 2*L;
6 dx = x_length/(nx−1); dy = dx;
7 [XX YY] = meshgrid(−L:dx:L,−L:dy:L);
8 u_exact = exact_sol(XX,YY);
9 u_new = u_init;

10 error = max(max(abs(u_old − u_new)));
11 u_old(1,:) = u_exact(1,:); u_old(nx,:) = u_exact(nx,:);
12 u_old(:,1) = u_exact(:,1); u_old(:,nx) = u_exact(:,nx);
13 u_new(1,:) = u_exact(1,:); u_new(nx,:) = u_exact(nx,:);
14 u_new(:,1) = u_exact(:,1); u_new(:,nx) = u_exact(:,nx);
15 count = 0;
16 tic
17 while error > 1.0000e−12
18 count = count + 1;
19 u_old = u_new;
20 for i = 2:(nx−1)
21 for j = 2:(nx−1)
22 u_new(i,j) = dx/(sigma_x+sigma_y)*(R(XX(i,j),YY(i,j)) − H

(XX(i,j),YY(i,j),(u_old(i+1,j) − u_old(i−1,j))/(2*dx),(
u_old(i,j+1) − u_old(i,j−1))/(2*dy))) + sigma_x/(
sigma_x+sigma_y)*1/2*(u_old(i+1,j) + u_old(i−1,j)) +
sigma_y/(sigma_x+sigma_y)*1/2*(u_old(i,j+1) + u_old(i,j
−1));

23 end
24 end
25 error = max(max(abs(u_old − u_new)));
26 end
27 time_need = toc;
28 u_exact = exact_sol(XX,YY);
29 sol = u_new;
30 Max_norm_error = max(max(abs(u_exact−u_new)));
31 iteration = count;
32 end

1 function [time_need iteration XX YY sol norm_error u_exact] = sweeping2D(H
,R,L,nx,A,B,sigma_x,sigma_y,exact_sol)

2 u_old = B*ones(nx,nx);
3 u_init = A*ones(nx,nx);
4 x_length = 2*L;
5 y_length = 2*L;
6 dx = x_length/(nx−1); dy = dx;
7 [XX YY] = meshgrid(−L:dx:L,−L:dy:L);
8 u_exact = exact_sol(XX,YY);
9 u_new = u_init;

Page 17 of 20

10 error = dx^2*norm(abs(u_old−u_new),1);
11 u_old(1,:) = u_exact(1,:); u_old(nx,:) = u_exact(nx,:);
12 u_old(:,1) = u_exact(:,1); u_old(:,nx) = u_exact(:,nx);
13 u_new(1,:) = u_exact(1,:); u_new(nx,:) = u_exact(nx,:);
14 u_new(:,1) = u_exact(:,1); u_new(:,nx) = u_exact(:,nx);
15 count = 0;
16 tic
17 while error > 1.0000e−12
18 count = count + 1;
19 u_old = u_new;
20 u_1 = u_new;
21 for i = 2:(nx−1)
22 for j = 2:(nx−1)
23 u_1(i,j) = dx/(sigma_x+sigma_y)*(R(XX(i,j),YY(i,j)) − H(

XX(i,j),YY(i,j),(u_old(i+1,j) − u_1(i−1,j))/(2*dx),(
u_old(i,j+1) − u_1(i,j−1))/(2*dy))) + sigma_x/(sigma_x+
sigma_y)*1/2*(u_old(i+1,j) + u_1(i−1,j)) + sigma_y/(
sigma_x+sigma_y)*1/2*(u_old(i,j+1) + u_1(i,j−1));

24 end
25 end
26 u_2 = u_1;
27 for i = (nx−1):−1:2
28 for j = 2:(nx−1)
29 u_2(i,j) = dx/(sigma_x+sigma_y)*(R(XX(i,j),YY(i,j)) − H(

XX(i,j),YY(i,j),(u_2(i+1,j) − u_1(i−1,j))/(2*dx),(u_1(i
,j+1) − u_2(i,j−1))/(2*dy))) + sigma_x/(sigma_x+sigma_y
)*1/2*(u_2(i+1,j) + u_1(i−1,j)) + sigma_y/(sigma_x+
sigma_y)*1/2*(u_1(i,j+1) + u_2(i,j−1));

30 end
31 end
32 u_3 = u_2;
33 for i = 2:(nx−1)
34 for j = (nx−1):−1:2
35 u_3(i,j) = dx/(sigma_x+sigma_y)*(R(XX(i,j),YY(i,j)) − H(

XX(i,j),YY(i,j),(u_2(i+1,j) − u_3(i−1,j))/(2*dx),(u_3(i
,j+1) − u_2(i,j−1))/(2*dy))) + sigma_x/(sigma_x+sigma_y
)*1/2*(u_2(i+1,j) + u_3(i−1,j)) + sigma_y/(sigma_x+
sigma_y)*1/2*(u_3(i,j+1) + u_2(i,j−1));

36 end
37 end
38 u_4 = u_3;
39 for i = (nx−1):−1:2
40 for j = (nx−1):−1:2
41 u_4(i,j) = dx/(sigma_x+sigma_y)*(R(XX(i,j),YY(i,j)) − H(

XX(i,j),YY(i,j),(u_4(i+1,j) − u_3(i−1,j))/(2*dx),(u_4(i
,j+1) − u_3(i,j−1))/(2*dy))) + sigma_x/(sigma_x+sigma_y
)*1/2*(u_4(i+1,j) + u_3(i−1,j)) + sigma_y/(sigma_x+
sigma_y)*1/2*(u_4(i,j+1) + u_3(i,j−1));

42 end

Page 18 of 20

43 end
44 u_new = u_4;
45 error = dx^2*norm(abs(u_old−u_new),1);
46 end
47 time_need = toc;
48 u_exact = exact_sol(XX,YY);
49 sol = u_new;
50 norm_error = dx^2*norm(abs(u_exact−u_new),1);
51 iteration = count;
52 end

1 clear all
2 close all
3 clc % Domain is [−L,L]
4 %%
5 % % 1nd example
6 % L = 1;
7 % H = @(x,y,p,q) sqrt(p.^2 + q.^2);
8 % R = @(x,y) 1;
9 % exact_sol = @(x,y) 1 − sqrt(x.^2 + y.^2);

10 % Upper_Bound = 1;
11 % Lower_Bound = 0;
12 % u_init = @(x) 0;
13 % sigma_x = 1.000000000001;
14 % sigma_y = 1.000000000001;
15 %%
16 % 2st example
17 L = 1;
18 H = @(x,y,p,q) sqrt(p.^2 + q.^2);
19 R = @(x,y) sqrt((1−abs(x)).^2 + (1−abs(y)).^2);
20 exact_sol = @(x,y) (1−abs(x)).*(1−abs(y));
21 Upper_Bound = 1;
22 Lower_Bound = 0;
23 u_init = @(x) 0;
24 sigma_x = 1.000000000001;
25 sigma_y = 1.000000000001;
26 %%
27 % % Number of grid points
28 nx_vec = [16 32 64 128 256 512];% 1024];
29 for mesh = 1:length(nx_vec)
30 nx = nx_vec(mesh);
31 dx = 2*L/(nx−1);
32 %[time iteration XX YY sol error u_exact] = monotone2D(H,R,L,nx,

Lower_Bound,Upper_Bound,sigma_x,sigma_y,exact_sol);
33 [time iteration XX YY sol error u_exact] = sweeping2D(H,R,L,nx,

Lower_Bound,Upper_Bound,sigma_x,sigma_y,exact_sol);
34 new_nx_vec(mesh) = nx;
35 norm_error_vec(mesh) = error;
36 time_need_vec(mesh) = time;

Page 19 of 20

37 ddx_vec(mesh) = dx;
38 iteration_vec(mesh) = iteration;
39 figure(mesh);
40 surf(XX,YY,sol); title('Approximated solution');
41 figure(mesh+1)
42 surf(XX,YY,u_exact); title('Exact solution');
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 %newfigure = figure(mesh+10); % compute the order of accuracy
45 %set(newfigure,'color','white');
46 %loglog(ddx_vec,abs(norm_error_vec));
47 %title('Graph of norm error against dx on log−log scale')
48 first_col = ones(length(new_nx_vec),1); second_col = log(ddx_vec)';
49 AA = [first_col,second_col];
50 FF_accuracy = log(norm_error_vec);
51 solution_accuracy = (AA'*AA)^(−1)*AA'*FF_accuracy';
52 %K = solution_accuracy(1); p = solution_accuracy(2); vpa([K,p])
53 accuracy_vec(mesh) = solution_accuracy(2);
54 end
55 accuracy_vec
56 %%
57 newfigure2 = figure;
58 plot(nx_vec,iteration_vec,'−−o');
59 set(newfigure2,'color','white');
60 title('Graph of iteration against dx on log−log scale');
61 %%
62 newfigure3 = figure;
63 plot(nx_vec,time_need_vec,'−o');
64 set(newfigure3,'color','white');
65 title('Graph of time against dx on log−log scale');

References

[1] Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions, User’s guide to viscosity so-
lutions of second order partial differential equation, Bull. Amer. Math. Soc. 27 (1992),
pp 1-67.

[2] M.G Crandall, P.L Lions, Two approximations of solutions of Hamilton-Jacobi equa-
tions, Math. Comp., 43 (1984), pp. 1-19.

[3] Adam M.Oberman, Tiago Salvador, Filtered schemes for Hamilton - Jacobi equations:
A simple construction of convergent accurate difference schemes, Journal of Compu-
tational Physics, 284 (2015), pp 367-388.

[4] Chiu YenKao, Stanley Osher, Jianliang Qian, Lax–Friedrichs sweeping scheme for static
Hamilton–Jacobi equations, Journal of Computational Physics, 196 (2004), pp 367-
391.

Page 20 of 20

	Hamilton-Jacobi equations and viscosity solutions
	Monotone schemes for static equations
	Existence, uniqueness and comparison principle for schemes
	The Lax-Friedrich scheme
	Implementation in one dimension
	Implementation in two dimensions

	Lax-Friedrich sweeping: A faster scheme
	Implementation in one dimension
	Implementation in two dimensions

	MatLab code
	MatLab code for 1D case
	MatLab code for 2D case

