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1. Legendre’s transform

1.1. Definition. Let H : Rn → R be a given convex function, we want to study properties
of H and its Legendre’s transform deeply. Generally speaking, convexity is one-sided
linearity. H is the supremum of all affince functions whose graphs stay below the graph
of H. Basically, H is convex there is an index set A so that

H(p) = sup
{
vα · p+ aα : α ∈ A

}
where {vα}α∈A ⊂ Rn, {aα}α∈A ⊂ R. Assume that H is convex and superlinear (H grows
faster than linear speed), that is

lim
|p|→∞

H(p)

|p|
= +∞.

Definition 1 (Legendre’s transform). L : Rn → R is

L(v) = H∗(v) = sup
p∈Rn

(
p · v−H(p)

)
.

Example 1. If H(p) = 1
2 |p|

2 for p ∈ Rn then L(v) = 1
2 |v|

2 for v ∈ Rn.

1.2. Geometric meaning of Legendre’s transform. Consider all hyper-plane that touches
the graph of H from below of the form p · v+ c. Basically when varying v, this give lines
of slope v, and thus for p · v+ c to touch H from below, we can see that at the touching
point H(p) = p · v+ c, hence

L(v) = sup
p∈Rn

(
p · v−H(p)

)
= −c.

Lemma 1.1. L is finite, convex, and superlinear.

If H is not superlinear then L is still defined, but could be infinite at some places. An
example is H(p) = |p| for p ∈ Rn that yields L(v) = 0 for |v| 6 and L(v) = +∞ otherwise.

Lemma 1.2. If H is convex then L∗ = H, i.e., H∗∗ = H.
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We refer the proofs of Lemmas 1.1 and 1.2 to [5]. The key ingredient is the existence of
the so-called subgradient1 ∂−f(x) 6= ∅ at every point if f is a convex function. An important
inequality arises from the proof of Lemma 1.2 is

H(p) + L(v) > p · v for all p, v ∈ Rn.

It is natural to ask when do we have equality, in short,

H(p) + L(v) = p · v ⇐⇒ p ∈ ∂−L(v) ⇐⇒ v ∈ ∂−H(p).

In case H,L are C1, they become p = DL(v) iff v = DH(p).

Question 1. Show that if H is differentiable at p then one has ∂H(p) = {DH(p)}. Conversely, if
H is convex and ∂H(p) = {ξ} then H is differentiable at p with ∇H(p) = ξ.

Theorem 1.3. Assume that H is convex and differentiable. Then, H ∈ C1.

Proof. Assume pk → p0, we show DH(pk)→ ξ0 = DH(p0). Since |pk| 6 C for all k we have

H(pk + h) > H(pk) +DH(pk) · h for all |h| 6 1.

Thus |DH(pk)| 6 2max|p|6C+1 |H(p)|, hence up to subsequences DH(pk) → ξ0 for some
ξ0 ∈ Rn. By convexity

H(p) > H(pk) +DH(pk) · (p− pk)

and thus H(p) > H(p0) + ξ0 · (p− p0), hence ξ0 ∈ D−H(p0) and thus ξ0 ≡ DH(p0) since H
is differetiable at p0. The uniqueness of ξ0 = DH(p0) enables us to have convergence of
the whole sequence DH(pk)→ DH(p0). �

The proof also implies that:

Lemma 1.4. If H is convex then there hold

(i) (Boundedness of subgradient) ∂H(B(0,R)) ⊂ B(0,CR).
(ii) (Stability) If pk → p and vk ∈ ∂H(pk) such that vk → v then v ∈ ∂H(p).

About the existence of subgradient, there are some methods commonly used.

(1) Do convolution Hε = H ∗ ηε, then Hε is convex and smooth, thus at p one has
DHε(p) = vε, and we get a subsequential limit vεj → v ∈ ∂H(p).

(2) Proof by contradiction. H convex impliesH is locally Lipschitz, thus by Radamacher’s
theorem H is differentiable a.e.. Assume H is differentiable at pk and pk → p, then
(by compactness) if DH(pk)→ v and v /∈ ∂H(p) we can derive a contradiction.

(3) Hahn-Banach theorem (supporting hyper-plane in finite dimensional spaces).

Question 2. Show that if H is convex then ∂H = D−H is nonempty.

Question 3. If H is not convex, then what does the information H∗∗ recover?

1For convex functions, ∂−f and ∂f both mean the same thing as subgradients, even though the former
one can be defined for general nonconvex functions.
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1.3. Strictly convex Hamiltonians.

Theorem 1.5. Assume that H is convex and super-linear, then the following are equivalent:
(i) H is strictly convex, that is for s ∈ (0, 1) then

H(sp1 + (1− s)p2) < sH(p1) + (1− s)H(p2). (1.1)

(ii) ∂H(p1)∩ ∂H(p2) = ∅ if p1 6= p2.
(iii) L = H∗ ∈ C1.

Proof. For (i) implies (ii), if ξ ∈ ∂H(p1) ∩ ∂H(p2) for some p1 6= p2 then by definition of
subgradient we have{

H(sp1 + (1− s)p2) > H(p1) + ξ · (p2 − p1)(1− s),
H(sp1 + (1− s)p2) > H(p2) + ξ · (p1 − p2)s,

for s ∈ (0, 1). Multiplying the first equation with s, the second equation with (1− s) and
adding them we obtain a contradiction with (i).

For (ii) implies (iii), from Question 1 it suffices to show that ∂L(v) is a singleton at any
v ∈ Rn. It is obvious since p1,p2 ∈ ∂L(v) implies v ∈ ∂H(p1)∩∂H(p2) = ∅ is a contradiction.

For (iii) implies (i), if H is not strictly convex, i.e.,

H(s0p1 + (1− s0)p2) = s0H(p1) + (1− s0)H(p2).

for s0 ∈ (0, 1) and p1 6= p2, then for all s ∈ (0, 1) there holds

H(sp1 + (1− s)p2) = sH(p1) + (1− s)H(p2).

Take v ∈ ∂H (ps) where ps = sp1 + (1 − s)p2, then for p ∈ Rn we have H(p) −H (ps) >
v · (p− ps), thus

H(p) −H(p1) > H(ps) −H(p1) + v · (p− ps)
= (1− s)

(
H(p2) −H(p1)

)
+ v · (p− ps)

> (1− s)v · (p2 − p1) + v · (p− ps)
= v · (p− p1).

Thus v ∈ ∂H(p1) and similarly v ∈ ∂H(p2) as well, which is a contradiction as it implies
p1,p2 ∈ ∂L(v) = {∇L(v)}. �

Theorem 1.6. Assume H ∈ Ck(Rn) with k > 2, H is convex, super-linear and is locally uni-
formly convex, i.e., D2H(p) � 0 (positive definite) every where, then

• L ∈ Ck(Rn).
• DH : Rn → Rn is a Ck−1 diffeormophism.
• DL(v) = (DH)−1(v), D2L(v) =

[
D2H(DL(v))

]−1.
• L(v) = v ·DL(v) −H(DL(v)).

Proof. As H is locally uniformly convex, it is strictly convex and thus L ∈ C1 and we have
for all v ∈ Rn then

p = DL(v) =⇒ v = DH(p).
Thus (DL)−1 : Rn → Rn is well-defined and (DL)−1 = DH, which is of class Ck−1. Since
D2H � 0 everywhere in Rn, the inverse function theorem says that DH : Rn → Rn is a
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local Ck−1 diffeomorphism Rn → Rn, thus DL is also a local Ck−1 diffeomorphism and
thus L is of class Ck. By definition DH(DL(v)) = v for all v ∈ Rn, thus

D2H(DL(v)) ·D2L(v) = In

for all v ∈ Rn and therefore D2L(v) =
[
D2H(DL(v))

]−1. �

1.4. Hamiltonians that depend on positions. We consider Hamiltonians that depend
also on position, generally H = H(x,p) for (x,p) ∈ Rn ×Rn. Assume that

(H) H(x,p) ∈ C(Rn ×Rn),p 7→ H(x,p) is convex and

lim
|p|→∞

(
inf
x∈Rn

H(x,p)
|p|

)
= +∞.

We define as usual the Lagrangian

L(x, v) = H∗(x, v) = sup
p∈Rn

(
p · v−H(x,p)

)
, (x, v) ∈ Rn ×Rn. (1.2)

Theorem 1.7. Assume (H), then L is finite, convex and superlinear in v and L∗ = H∗∗ = H. The
supremum in (1.2) is achieved and if |v| 6 R then there exists CR such that

L(x, v) = sup
|p|6CR

(
p · v−H(x,p)

)
.

Also, L ∈ C(Rn×Rn) and ifH is strictly convex in p thenDvL(x, v) exists and (x, v) 7→ DvL(x, v)
is continuous.

Proof. The only new thing to prove here is the continuity of L. Assume (xk, vk)→ (x0, v0)
in Rn ×Rn, as |vk| 6 C, we can find pk ∈ Rn with |pk| 6 C such that

L(xk, vk) = pk · vk −H(xk,pk), k ∈N.

Denote ω(k) = |H(x0,pk) −H(xk,pk)|+C|vk − v0| → 0 as k → ∞ (here we use the fact that
pk is bounded and thus a local uniform modulus of continuity exists) then

L(xk, vk) = pk · vk −H(xk,pk) 6 pk · v0 −H(x0,pk) +ω(k) 6 L(x0, v0) +ω(k).

Therefore

lim sup
k→∞ L(xk, vk) 6 L(x0, v0).

Take any p ∈ Rn then by definition

L(xk, vk) > p · vk −H(xk,p), k ∈N,

which gives us that, for all p ∈ Rn then

lim inf
k→∞ L(xk, vk) > p · v0 −H(x0,p) =⇒ lim inf

k→∞ L(xk, vk) > L(x0, v0).

Thus the proof is complete. �
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Theorem 1.8. Assume (H), then if H ∈ Ck(Rn ×Rn) for k > 2 and H is locally uniformly
convex in p, i.e., D2H(x,p) � 0 for all (x,p) ∈ Rn×Rn. Then L ∈ Ck(Rn×Rn) and there exists
a unique p(x, v) such that

p(x, v) = DvL(x, v)
DxL(x, v) = −DxH(x,p(x, v))

D2vvL(x, v) =
[
D2ppH(x,p(x, v))

]−1
.

Also, p(x, v) = DvL(x, v) implies v = DpH(x,p(x, v)).

Proof. We already known that for each fixed x ∈ Rn then v 7→ L(x, v) is of class Ck(Rn).
By assumption, DpH : (x,p) 7→ DpH(x,p) is a Ck−1(Rn ×Rn) diffeomorphism (by inverse
function theorem with locally uniform convexity). The relations

p = DvL(x, v) ⇐⇒ v = DpH(x,p)

defines a map L : (x, v) 7→ (x,p) = (x,DvL(x, v)) with its inverse H : (x,p) 7→ (x,DpH(x,p)).
Now since H is a Ck−1(Rn ×Rn) diffeomorphism, L is also is a Ck−1(Rn ×Rn) diffeo-
morphism, i.e.,

(x, v) 7→ DvL(x, v) ∈ Ck−1(Rn ×Rn).
We need to show that (x, v) 7→ DxL(x, v) is Ck−1(Rn ×Rn). Let us define2

p(x, v) = DvL(x, v) ∈ Ck−1(Rn ×Rn).

From the identity
L(x, v) = p(x, v) · v−H(x,p(x, v))

we deduce that x 7→ L(x, v) is differentiable in x for each v and thus, by differentiating
with respect to x we have

DxL(x, v) = −DxH(x,p(x, v)) +
(
v ·Dxp(x, v) −DpH(x,p(x, v)) ·Dxp(x, v)

)
= −DxH(x,p(x, v))

since v = DpH(x,p(x, v)). �

Definition 2. Define

H : Rn ×Rn → Rn ×Rn

(x,p) 7→ (x, v) = (x,DpH(x,p))

and its dual

L : Rn ×Rn → Rn ×Rn

(x, v) 7→ (x,p) = (x,DvL(x, v)).

Under the assumption of Theorem 1.8, H,L are both local Ck−1 diffeomorphisms.

Remark 1. Sometimes we assume more that H is bounded in Rn × B(0,R) for each R > 0
(so is L) to get the boundedness of |p(x, v)| given |v| 6 C. If p(x, v) ∈ ∂vL(x, v) then
L(x, v+ h) > L(x, v) + p(x, v) · h, thus

|p(x, v)| = max
|h|61

p(x, v) · h 6 |L(x, v)|+ |L(x, v+ h)|.

2This is significant as it says x 7→ p(x, v) is continuously differentiable.
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2. Calculus of variations

Outline.
• We state the minimization for action functional problem and show that generally

minimizers satisfy Euler-Lagrange equation with less and less regularity assump-
tion.

C2 −→ C1 −→ piece-wise C1 −→ AC.

• Existence and regularity of minimizers. We show that there exists an absolutely
continuous minimizer and then show that the minimizer is indeed smooth (pro-
vided that the Lagrangian is smooth).

The main tool is the mechanism that allows us to go back and forth between Hamiltonian
viewpoint and Lagrangian viewpoint.

2.1. Action functional. For a continuous, piece-wise C1 curve γ : [a,b] → Rn, the action
functional of γ for L is defined by

I[γ] =

∫b
a
L(γ(s), γ̇(s))ds.

We note that γ ∈ AC([a,b]; Rn), the space of absolutely continuous curves, is enough to
define the action functional here (γ̇ ∈ L1([a,b]) is enough).

2.2. Minimizers and the Euler–Lagrange equation. There are many different notions of
minimizers, we start with the following notion.

Definition 3. Fix y, z ∈ Rn. Denote the admissible set as

A =
{
γ ∈ C ([a,b]; Rn) piece-wise C1,γ(a) = y,γ(b) = z

}
.

We say that γ ∈ A is a minimizer of class A if I[γ] = inf
η∈A

I[η].

We assume through out the chapter that
(L) L ∈ Ck(Rn ×Rn) for k > 2, L is super-linear in v uniformly in x and D2vvL(x, v) � 0

for all (x, v) ∈ Rn ×Rn.

Theorem 2.1. If γ ∈ C2([a,b]; Rn) is minimizer then γ satisfies the Euler-Lagrange equation
d

dt
(DvL(γ(s), γ̇(s))) = DxL(γ(s), γ̇(s)), a 6 s 6 b.

Proof. Let η ∈ C∞([a,b]; Rn) with η(a) = η(b) = 0. For each τ ∈ R, γ+ τη ∈ A. Let

i(τ) = I[γ+ τη]

then i : Rn → Rn and thus i ′(0) = 0. We recall that

i(τ) =

∫b
a
L
(
γ(s) + τη(s), γ̇(s) + τη̇(s)

)
ds.
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We deduce that

i ′(τ) =

∫b
a

(
DxL

(
γ(s) + τη(s), γ̇(s) + τη̇(s)

)
· η(s) +DvL

(
γ(s) + τη(s), γ̇(s) + τη̇(s)

)
· η̇(s)

)
ds.

Setting τ = 0 we have

i ′(0) =

∫b
a

(
DxL

(
γ(s), γ̇(s)

)
· η(s) +DvL

(
γ(s), γ̇(s)

)
· η̇(s)

)
ds.

As γ̇(s) is C1, by integration by parts we have

i ′(0) =

∫b
a

(
DxL(γ(s), γ̇(s)) −

d

ds
DvL(γ(s), γ̇(s))

)
η(s)ds = 0

for all η ∈ C∞([a,b]; Rn) with η(a) = η(b) = 0. This gives us the conclusion. �

Remark 2. If we only assume that γ ∈ C1([a,b]; Rn) then we cannot yet write down the
Euler-Lagrange equation. What we have is∫b

a

(
DvL(γ(t), γ̇(t)) −

∫ t
a
DxL(γ(s), γ̇(s))ds

)
· η̇(t)dt = 0

for all η ∈ C∞([a,b]; Rn) with η(a) = η(b) = 0. In order words we only have

DvL(γ(t), γ̇(t)) = ξ+
∫ t
a
DxL(γ(s), γ̇(s))ds (2.1)

for some ξ ∈ Rn. This says that t 7→ DvL(γ(t), γ̇(t)) is C1 provided that s 7→ (γ(s), γ̇(s)) is
C0 only.

Theorem 2.2. If γ ∈ C1([a,b]; Rn) is minimizer then γ ∈ C2([a,b]; Rn) and in fact γ ∈
Ck([a,b]; Rn).

Proof. Fix t0 ∈ [a,b] and let (x0, v0) =
(
γ(t0), γ̇(t0)

)
. Recall that (x, v) 7→ (x,DvL(x, v)) is a

local Ck−1 diffeomorphism. Let H be the local inverse that maps (x,p) → (x,DpH(x,p))
which is also a Ck−1 diffeomorphism, we have{

H (x0,DvL(x0, v0)) = (x0, v0),
H (γ(t),DvL(γ(t), γ̇(t))) = (γ(t), γ̇(t)),

for t ≈ t0. As a minimizer, we still have γ satisfies (2.1), thusDvL (γ(·), γ̇(·)) ∈ C1. Together
with H is Ck−1 and

H (γ(t),DvL(γ(t), γ̇(t))) = (γ(t), γ̇(t))

we deduce that t 7→ (γ(t), γ̇(t)) is C1, therefore γ ∈ C2 and by induction γ ∈ Ck. �

Remark 3 (Hamiltonian and Lagrangian viewpoints). If one thinks of x(t) = γ(t) as the
position of a particle and v(t) = γ̇(t) as the velocity then the momentum is defined as

p(t) = DvL(γ(t), γ̇(t)) =⇒ v(t) = DpH(x(t),p(t)).
8



We call (γ(t), γ̇(t)) the Lagrangian coordinates, and the associated Hamiltonian system is
defined by (x(t),p(t)) with{

ẋ(t) = γ̇(t) = DpH (x(t),p(t)) ,
ṗ(t) = DxL(γ(t), γ̇(t)) = −DxH(x(t),p(t)).

We remark that if L is not nice enough then minimizers can have bad regularity or min-
imizers may not satisfy the Euler-Lagrange equation. To further relax the regularity of
minimizers, we will need the following lemma.

Lemma 2.3. If γ : [a,b] → Rn is a continuous, piece-wise C1 minimizer then γ|[c,d] is also a
minimizer to

inf
η∈A ′

∫d
c
L(η(s), η̇(s)) ds

where A ′ is the set of all η continuous and piece-wise C1 from [c,d] to Rn with η(c) = γ(c) and
η(d) = γ(d).

Proof. For each η ∈ A ′, we define η̃ = η on [c,d] and η̃ = γ on [a,b]\(c,d). It is clear that
η̃ ∈ A, thus I[η̃] > I[γ] and therefore

inf
η∈A ′

∫d
c
L(η(s), η̇(s)) ds >

∫d
c
L(γ(s), γ̇(s)) ds

and thus γ is a minimizer on [c,d]. �

Theorem 2.4. If γ ∈ A, i.e., γ is a continuous, piece-wise C1 minimizer then γ ∈ Ck.

Proof. Let a = a0 < . . . < am = b such that γ ∈ C1([ai,ai+1]) for i = 0, . . . ,m − 1. By
the previous Lemma γ|[ai,ai+1] is a minimizer on the subinterval, therefore by Theorem
2.2 γ ∈ Ck([ai,ai+1]) for i = 1, 2, . . . ,m− 1. We only have to show that γ is C1 at ai for
i = 1, . . . ,m− 1, then again Theorem 2.2 concludes. By calculus of variation we have∫b

a

(
DxL(γ, γ̇) · η+DvL(γ, γ̇) · η̇

)
ds =

m−1∑
i=0

∫ai+1

ai

(
DxL(γ, γ̇) · η+DvL(γ, γ̇) · η̇

)
ds = 0

for all η smooth with η(a) = η(b) = 0. Using integration by parts we have
m−1∑
i=0

∫ai+1

ai

(
DxL(γ, γ̇) −

d

ds
DvL(γ, γ̇)

)
· ηds

+

m∑
i=0

[
DvL

(
γ(a−i ), γ̇(a

−
i )
)
−DvL

(
γ(a+i ), γ̇(a

+
i )
)]
η(ai) = 0.

From the Euler-Lagrange equation on [ai,ai+1] the integral term is zero, thus
m∑
i=0

[
DvL

(
γ(a−i ), γ̇(a

−
i )
)
−DvL

(
γ(a+i ), γ̇(a

+
i )
)]
η(ai) = 0.

Since η can be chosen arbitrarily we conclude that

DvL
(
γ(a−i ), γ̇(a

−
i )
)
= DvL

(
γ(a+i ), γ̇(a

+
i )
)
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for i = 0, 1, . . . ,m. Now using the identity p · v = H(x,p) + L(x, v) iff p = DvL(x, v) iff
v = DpH(x,p) we obtain the conclusion γ̇(a−i ) = γ̇(a

+
i ) and hence γ is C1 at ai. �

Definition 4 (Extremal curves). A continuous and piece-wise C1 curve γ : [a,b]→ Rn is called
extremal if it is a critical point of the action functional

d

ds
I[γ+ sη]

∣∣∣
s=0

= 0 for all η ∈ C∞c ([a,b]; Rn).

It is clear that any continuous, piece-wise C1 extremal curve is Ck and satisfies the Euler-Lagrange
equation.

2.3. Absolutely continuous minimizers. The space of continuous and piece-wise smooth
curves with fixed endpoints is not compact (under a reasonable topology), therefore it is
convenient to relax to a better space in which we have compactness (to construct mini-
mizers).

Definition 5 (Absolutely continuous). γ : [a,b] → Rn is absolutely continuous if for each
ε > 0 there exists δ > 0 such that, if {(ai,bi)}i∈N is a disjoint family of intervals in (a,b) then∑

i∈N

|bi − ai| < δ =⇒
∑
i∈N

|γ(bi) − γ(ai)| < ε.

Theorem 2.5 (Characterization of absolutely continuous curves). γ is absolutely continuous
if and only if all of the following hold

(i) γ̇ exists a.e. in (a,b).
(ii) γ̇ is Lebesgue integrable on (a,b).

(iii) γ(t) − γ(a) =
∫t
a γ̇(s) ds for each t ∈ [a,b].

Note that from our super-linearity assumption, there are two scenarios:

• L(x, v) > C|v|p −C for some p > 1, we can get some compactness in Lp([a,b]) of γ̇
and the existence is simple (see Appendix of [13] for example).
• One cannot get any Lp bound with p > 1 for a minimizing sequence. The best we

can do is γ̇ ∈ L1([a,b]), which makes it harder as compactness in L1([a,b]) requires
some additional tightness condition. This theorem says that generally one may
replaces absolutely continuous curves by curves γ with γ̇ ∈ L1.

2.4. Compactness of absolutely continuous curves. The space AC([a,b]; Rn) of abso-
lutely continuous curves enjoy the following compactness (tightness) property.

Theorem 2.6. Let {γk}k∈N ⊂ AC([a,b]; Rn). Suppose that {γ̇k}k∈N is uniformly integrable on
[a,b], that is for each ε > 0, there is δ > 0 such that if E ⊂ [a,b] is a Borel measurable set with
measure |E| < δ then

sup
k∈N

∫
E
|γ̇(s)|ds < ε. (2.2)

If there exists t0 ∈ [a,b] such that {γk(t0)} is bounded, then there exists a subsequence γkj and
γ ∈ AC([a,b]; Rn) such that γkj → γ uniformly on [a,b] and γ̇kj ⇀ γ̇ weakly in L1([a,b]), that
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is

lim
kj→∞

∫b
a
γ̇kj(s) ·φ(s) ds =

∫b
a
γ̇(s) ·φ(s) ds

for all φ ∈ L∞([a,b] Rn).

This theorem allows us to utilize the nice property of the space AC([a,b]; Rn) (togeher
with the lower semi-continuity of the action functional).

Proof of Theorem 2.6. We split the proof to several steps for clarity.
(1) {γk} is equi-continuous. Since {γk(t0)} is bounded, for |t1 − t2| < δ we have

|γk(t1) − γk(t2)| 6

∣∣∣∣∫ t2
t1

γ̇k(s)ds

∣∣∣∣ < ε
for all k ∈ N. By Arzela-́Ascoli theorem, there exists γkj → γ uniformly on [a,b].
By abusing of notation, we will write γkj → γ uniformly on [a,b].

(2) γ is absolutely continuous. Fix ε and pick δ > 0 as in the assumption of the
Theorem. Let {(ai,bi)}i∈N be a sequence of disjoint open intervals with

∑
i∈N(bi −

ai) < δ, then the tightness condition gives us that, for all k ∈N then∑
i∈N

|γk(bi) − γk(ai)| 6
∑
i∈N

∫bi
ai

|γ̇k(s)|ds < ε

since
∑
i∈N(bi − ai) < δ. Let k→∞ we deduce that γ ∈ AC([a,b]; Rn).

(3) We show γ̇k → γ̇ weakly in L1. To show that

lim
k→∞

∫b
a
γ̇k(s)φ(s)ds =

∫b
a
γ̇(s)φ(s)ds (2.3)

for φ ∈ L∞([a,b]; Rn) we use approximation φ ∈ L∞ by simple functions from
[a,b] to Rn. First of all, any open set U in (a,b) can be written as a disjoint union
of countably many open sub-intervals {(ai,bi)}i∈N. For ε > 0 take δ > 0 as in (2.2)
and choose m such that E = U\

⋃m
i=1(ai,bi) has |E| < δ, we have

sup
k∈N

∣∣∣∣∣
∫
U
γ̇k(s)ds−

m∑
i=1

∫bi
ai

γ̇k(s)ds

∣∣∣∣∣ < ε. (2.4)

Now we have
m∑
i=1

∫bi
ai

γ̇k(s)ds =

m∑
i=1

(
γk(bi) − γk(ai)

)
−→

m∑
i=1

(
γ(bi) − γ(ai)

)
=

m∑
i=1

∫bi
ai

γ̇(s)ds.

Taking the limit as k→∞ in (2.4) we obtain
m∑
i=1

∫bi
ai

γ̇(s)ds− ε 6 lim inf
k→∞

∫
U
γ̇k(s)ds 6 lim sup

k→∞
∫
U
γ̇k(s)ds 6

m∑
i=1

∫bi
ai

γ̇(s)ds+ ε.

Taking m→∞, and since ε is arbitrary we deduce

lim
k→∞

∫
U
γ̇k(s)ds =

∫
U
γ̇(s)ds. (2.5)

11



By approximation, (2.5) holds for all measurable set A ⊂ [a,b], and again by approxima-
tion (2.3) follows. �

2.5. Existence of absolutely continuous minimizers. Now we define the new admissible
for fixed y, z ∈ Rn set as

Aac = {γ ∈ AC([a,b]; Rn) : γ(a) = y,γ(b) = z} .

The general framework for the existence by direct method goes like this.

(1) I[γ] > −C for all γ ∈ Aad, usually by the super-linearity of L that L(x, v) > θ|v|−Cθ.
(2) Taking a minimizing sequence {γk} ⊂ Aad, the compactness result gives (via sub-

sequence) γk → γ uniformly on [a,b] and γ̇k ⇀ γ̇ weakly in L1([a,b]; Rn).
(3) Show that I[γ] 6 lim inf

k→∞ I[γk], this is a key point.

Theorem 2.7. Assume L ∈ C1(Rn ×Rn) such that L(x, v), DvL(x, v) belong to BUC(Rn ×
B(0,R)) for each R > 0, v 7→ L(x, v) is convex and is super linear uniformly in x, i.e.,

lim
|v|→∞

(
inf
x∈Rn

L(x, v)
|v|

)
= +∞. (2.6)

Then there exists a minimizer γ ∈ Aac of the action functional.

Proof. Assume infγ∈Aac
I[γ] is finite, we can take minimizing sequence {γk}k∈N. From the

super-linearity of L(x, v), for each θ > 0 there exist Cθ > 0 such that

L(x, v) > θ|v|−Cθ for all (x, v) ∈ Rn ×Rn.

As I[γk] 6 C, we deduce that (the tightness condition follows)∫b
a
|γ̇k(s)|ds 6

C+Cθ
θ

for all k ∈N.

Since γk(a) = y is fixed, {γk} satisfies the tightness (uniform integrability) condition due
to super-linearity, thus there exists γ ∈ Aac such that γk → γ uniformly and γ̇k ⇀ γ̇

weakly in L1([a,b]; Rn). We have left to show that

I[γ] 6 lim inf
k→∞ I[γk].

To use the uniformly bound on modulus of continuity of L and DvL we need a L∞ bound
on |γ̇k|, this is unfortunately cannot be obtained on the whole interval [a,b]. Nevertheless,
for m ∈N we have

sup
k∈N

∣∣{s ∈ [a,b] : |γ̇k(s)| > m
}∣∣ 6 C

m
. (2.7)

As γ̇ ∈ L1([a,b]; Rn), we also have∣∣{s ∈ [a,b] : |γ̇(s)| > m
}∣∣ 6 ‖γ̇‖L∞

m
.

Let
Em =

{
s ∈ [a,b] : |γ̇(s)| 6 m, |γ̇k(s)| 6 m for all k ∈N

}
12



then we can choose m such that |[a,b]\Em| < δ for any given δ > 0. On Rn×B(0,m) there
exists a (uniform) modulus of continuity ω(x, v) of L,DvL, we have for a.e. s ∈ Em that

L(γk(s), γ̇k(s)) > L(γ(s), γ̇k(s)) −ω (‖γk − γ‖L∞)
> L

(
γ(s), γ̇(s)

)
−ω (‖γk − γ‖L∞) +DvL(γ(s), γ̇(s)) · (γ̇k(s) − γ̇(s)).

On Em we have s 7→ DvL(γ(s), γ̇(s)) ∈ L∞([a,b]; Rn), therefore after taking integration over
s ∈ Em and let k→∞ we obtain∫b

a
L(γk(s), γ̇k(s))ds >

∫
Em

L(γk(s), γ̇k(s))ds− |[a,b]\Em|Cθ.

Therefore

lim inf
k→∞

∫b
a
L(γk(s), γ̇k(s))ds >

∫
Em

L(γ(s), γ̇(s))ds−Cθδ >
∫b
a
L(γ(s), γ̇(s))ds− 2Cθδ.

Let m→∞ and δ→ 0 we obtain the conclusion. �

Assume L ∈ Ck(Rn ×Rn) for some k > 2 and D2vL(x, v) � 0 for all (x, v) and the super-
linearity (2.6). We recall that if γ is a continuous piece-wise C1 minimizer (or an extremal
curve) then γ is Ck and γ satisfies the Euler-Lagrange equation

d

dt

(
DvL

(
γ(t), γ̇(t)

))
= DxL

(
γ(t), γ̇(t)

)
, a 6 t 6 b. (2.8)

2.6. Hamiltonian and Lagrangian viewpoints. Before showing similar result for abso-
lutely continuous minimizers, let us give some remarks on Lagrangian and Hamiltonian
viewpoints. For a continuous and piece-wise C1 curve γ, denote by{

x(t) = γ(t)

p(t) = DvL(γ(t), γ̇(t)) −→ γ̇(t) = DpH(x(t),p(t)).

By Legendre’s transform we have

H(x(t),p(t)) + L(γ(t), γ̇(t)) = γ̇(t) · p(t).

If γ satisfies the Euler-Lagrange equation then

ṗ(t) = DxL(γ(t), γ̇(t)) = −DxH(x(t),p(t)).

Thus the Euler-Lagrange equation for γ is the key to the Hamiltonian system of 2n
variables {

ẋ(t) = DpH(x(t),p(t))
ṗ(t) = −DxH(x(t),p(t)).

(2.9)

The Lipchitz property of DpH(x,p) and DxH(x,p) are important here, as they ensure the
existence and uniqueness of such a solution (x(t),p(t)) for all time. For now, let say
(x(t),p(t)) exists on a domain.

Lemma 2.8 (Conservation of energy). On its domain we have t 7→ H(x(t),p(t)) is constant.

Proof. By definition
d

dt

(
H(x(t),p(t))

)
= DxH · ẋ+DpH · ṗ = 0

since ẋ = DpH and ṗ = −DxH. �
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Remark 4 (Boundedness of the Hamiltonian flow). As long as (x(t),p(t)) exists (in its
domain) then

H(x(t),p(t)) = H(x(0),p(0)) 6 C.

The super-linearity of H yields that |p(t)| 6 C. If we assume that DpH,DxH ∈ Lip(Rn ×
B(0,R)) for each R > 0 then this implies that (x(t),p(t)) is defined for all t ∈ R. In
summary, we have

A priori knowledge −→ Lipschitz vector field
−→ Wellposedness of ODEs.

Definition 6 (Hamiltonian flow and Lagrangian flow). Assume the wellposedness of (x(t),p(t))
for all t ∈ R, we define

φHt (x,p) = (x(t),p(t))
where (x(t),p(t)) solves the Hamiltonian system (2.9) with initial condition (x(0),p(0)) = (x,p).
Similarly, assume the wellposedness of solution to the Euler-Lagrange equation for t ∈ R, we
define

φLt (x, v) = (γ(t), γ̇(t))
where γ solves the Euler-Lagrange equation (2.8) with initial condition (γ(0), γ̇(0)) = (x, v).

Recall that, L(x, v) = (x,DvL(x, v)) for (x, v) ∈ Rn ×Rn is a local Ck−1 diffeomorphism
with its inverse

L−1(x,p) = (x,DpH(x,p)), (x,p) ∈ Rn ×Rn.

The relation between Hamiltonian flow and Lagrangian flow is

L ◦φLt ◦L−1 = φHt . (2.10)

Lagrangian

d

dt
DvL(γ, γ̇) = DxL(γ, γ̇)

Hamiltonian{
ẋ = DpH(x,p)
ṗ = −DxH(x,p).

Remark 5 (Integrable system). For φ = φ(x,p) is continuously differentiable, let us intro-
duce the notation

{H,φ} := DpH ·Dxφ−DxH ·Dpφ.

Then the conservation of energy is simply {H,H} = 0. Such an identity is called an invari-
ant, as it says t 7→ φ(x(t),p(t)) is constant. If there exist φ1, . . . ,φn−1 linearly independent
so that {H,φi} = 0 then the Hamiltonian system (2.9) can be reduced to n unknowns
instead of original 2n unknowns. Such a system is called integrable system.

2.7. Regularity of absolutely continuous minimizers. Assume L ∈ Ck(Rn ×Rn) for
some k > 2 and D2vL(x, v) � 0 for all (x, v), L is super-linear (2.6) and further that for
each R > 0 then

L, ∇L ∈ Lip(Rn ×B(0,R))∩ Lip(Rn ×B(0,R)).
The ultimate goal is to show that, any minimizer γ ∈ AC is also Ck. The idea of the proof
is again, seemingly ad-hoc.
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• Pick a point t0 ∈ (a,b), let γ be the solution to Euler-Lagrange equation with initial
condition (γ(t0), v) where v is to be chosen such that γ(t0 + δ) = γ(t0 + δ) for some
δ > 0, then γ ∈ Ck.

γ(t0)

γ(t0 + δ)

γ

• We show γ is a minimizer on [t0, t0 + δ], thus by the uniqueness of minimizer (we
have strict convexity) γ = γ ∈ Ck.

To prepare for the proof, we recall that Lagrangian flow is denoted by φLt : (x, v) 7→
(γ(t), γ̇(t)) where {

d
ds (DvL(γ(s), γ̇(s))) = DxL(γ(s), γ̇(s)), s > 0(
γ(0), γ̇(0)

)
= (x, v).

Lemma 2.9. Let x0 ∈ Rn and π : Rn ×Rn → Rn be the projection that maps (x, v) → x, there
exists δ > 0 such that for a any fixed x0 ∈ Rn then

B(x0,C|s|) ⊂ π ◦φLs
(
{x0}×B(0, 2C)

)
for all |s| 6 δ.

The key point is the same constant C on both sides.

Proof. We take it for granted the fact that, if we start the Lagrangian flow at (x, v) then

φLt (x, v) =
(
γ(t, x, v),

∂γ

∂t
(t, x, v)

)
gives us γ ∈ Ck defined for short time, as it satisfies the Euler-Lagrange equation. We
want to show that

γ(t, x0, v) can be anywhere in B(x0, tC), as v varies in B(0, 2C).

This is equivalent to

γ(t, x0, v) − γ(0, x0, v)
t

can be anywhere in B(0,C) as v varies in B(0, 2C).

Let us define

Γ :(−ε, ε)×Rn −→ Rn

(t, v) 7−→ γ(t, x0, v) − γ(0, x0, v)
t

=

∫1
0

∂γ

∂t
(st, x0, v) ds.

By the Lipschitz bound |γ(y) − γ(x0)| 6 C|x0 − y| near x0 we see that in fact Γ : (−ε, ε)×
Rn → B(0,C).
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By ODE theory, γ ∈ Ck and thus (t, v) 7→ Γ(t, v) is C1. If t = 0 then γ̇(0) = dγ
ds (0, x0, v) = v

for v ∈ Rn, thus

Γ(0, v) = v for all v ∈ Rn and thus
∂Γ

∂v
(0, ξ) = IdRn for all ξ ∈ Rn.

To use the inverse function theorem, let us define

Γ̃ : (−ε, ε)×B(0, 2C) −→ Rn+1

(t, v) 7−→
(
t, Γ(t, v)

)
.

It is clear that Γ̃ is C1 in (−ε, ε)×B(0, 2C) into Rn+1 and

Γ̃(0, v) = (0, v) for all v ∈ Rn

and

DΓ̃(0, v) =
(

1 0
∂Γ
∂t (0, v) IdRn

)
which is non-degenerate3. We want to show that there exists δ > 0 such that

Γ̃ : (−δ, δ)×B(0, 2C)→ (−δ, δ)×B(0,C)

is a C1 diffeomorphism. By inverse function theorem4 for (0, v) ∈ B(0,C), there exists
δv > 0, τv, κv > 0 such that

Γ̃ : (−δv, δv)×B(v, τv)→ (−δv, δv)×B(v, κv) (2.11)

is a C1 diffeomorphism. Denote its (injective) inverse by

Γ̃−1v : (−δv, δv)×B(v, κv)→ (−ε, ε)×B(0, 2C).

• There exists δ > 0 such that Γ̃ : (−δ, δ) × B(0,C) → (−ε, ε) × B(0,C) is injective
on its domain. To see that, assume the contrary that we can find tn → 0 and
v1n 6= v2n in B(0,C) such that Γ̃(tn, v1n) = Γ̃(tn, v2n). By compactness we can assume
v1n → v1, v2n → v2 for v1, v2 ∈ B(0,C). In the limit as tn → 0 we have

v1 = Γ̃(0, v1) = Γ̃(0, v2) = v2.

By the previous argument, as v1 = v2 = v, there exists δv > 0, τv > 0 such that Γ̃ is
invertible on (−δv, δv)×B(v, δv), which means v1n = v2n for n large, a contradiction.
• As a consequence, from (2.11) we obtain that the image Γ̃(−δ, δ)×B(0,C) contains
(−δ, δ)×B(0,C).

In other words, we have shown that B(x0,C|t|) ⊂ π ◦φLt
(
{x0}×B(0, 2C)

)
for all |t| < δ. �

Theorem 2.10. Let γ ∈ Aac be a minimizer. Then γ ∈ Ck and γ satisfies the Euler-Lagrance
equation.

Proof. We divide the proof into several steps.

3A non-degenerate matrix in Rn+1 ×Rn+1.
4If we apply the inverse function theorem for (0, 0) ∈ R×Rn then there exists δ > 0 and τ > 0 such that

Γ̃ : (−δ, δ)×B(0,C)→ (−δ, δ)×B(0, τ)

is a C1 diffeomorphism. However, this does not give us the same constant C on both sides.
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(1) As γ ∈ AC([a,b]; Rn), γ̇ ∈ L1([a,b]; Rn) and γ is differentiable a.e. in [a,b]. We can
pick t0 ∈ (a,b) such that γ is differentiable at t0 and |γ̇(t)0| 6 C0.

(2) There exists δ1 > 0 such that

|γ(t) − γ(t0)| 6 2C0|t− t0| for t ∈ (t0 − δ1, t0 + δ1) ⊂ (a,b).

Indeed, by definition of diffrentiability at t0, there is a modulus ω such that

γ(t) − γ(t0) − γ̇(t0)(t− t0) = (t− t0)ω(|t− t0|)

for t ∈ (t0 − δ1, t0 + δ1), hence |γ(t) − γ(t0)| 6 2C0|t− t0| for t ∈ (t0 − δ1, t0 + δ1).
(3) (Crucial step) Using the previous lemma we can find v ∈ B(0, 2C0) such that

π ◦φLt+δ1(γ(t0), v) = γ(t+ δ1)

since γ(t+ δ1) ∈ B(γ(t0), 2C0δ1).
(4) Let p = DvL(x, v) and ϕ ∈ C2(Rn) with Dϕ(γ(t0)) = p. Using method of character-

istics, there exists δ2 > 0 such that we have existence of a C2(Rn× (t0 − δ2, t0 + δ2))
function that solves{

ut(x, t) +H(x,Du(x, t)) = 0,
u(x, t0) = ϕ(x), x ∈ Rn.

Let us denote η(s) = π ◦ φLt0+s(γ(t0), v) for s ∈ (−δ, δ) where δ = min{δ1, δ2}. By
regularity of the Lagrangian flow, we have η ∈ Ck(t0, t0 + δ), thus the goal is to
show that γ ≡ η on (t0, t0 + δ). We do so by showing that

γ̃(t) =

{
γ(t), t /∈ (t0, t0 + δ)
η(t), t ∈ (t0, t0 + δ)

is a minimizer of the action functional on [a,b] and the result follows by unique-
ness of minimizer. It is clear that γ̃ ∈ AC([a,b]; Rn). Take any generic absolutely
continuous curve ζ : [t0, t0 + δ] → Rn with ζ(t0) = γ(t0) and ζ(t0 + δ) = γ(t0 + δ),
we have

u
(
ζ(t0 + δ), t0 + δ

)
− u

(
ζ(t0), t0

)
=

∫ t0+δ
t0

d

ds
u
(
ζ(s), s

)
ds

=

∫ t0+δ
t0

(
ut(ζ(s), s) +Du(ζ(s)) · ζ̇(s)

)
ds

=

∫ t0+δ
t0

(
Du(η(s)) · ζ̇(s) −H

(
ζ(s),Du(ζ(s)

))
ds 6

∫ t0+δ
t0

L
(
ζ(s), ζ̇(s)

)
ds.

On the other hand, by definition of the Lagrangian flow, η satisfies

η̇(s) = DpH
(
η(s),Du(ζ(s))

)
and therefore

u
(
η(t0 + δ), t0 + δ

)
− u

(
η(t0), t0

)
=

∫ t0+δ
t0

L
(
ζ(s), ζ̇(s)

)
ds

Therefore η is a minimizer on (t0, t0 + δ), hence γ = η ∈ Ck locally. �
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3. The weak KAM theorem

3.1. Outline. Our standing assumptions through out this chapter will be the following.
L ∈ Ck(Tn ×Rn) for some k > 2,

lim|v|→∞ (infTn
L(x,v)
|v|

)
= +∞,

D2vL(x, v) � 0 for all (x, v) ∈ Tn ×Rn.

(L)

As usual, the natural corresponding assumptions on H follows.
H ∈ Ck(Tn ×Rn) for some k > 2,

lim|p|→∞ (infTn
L(x,p)
|p|

)
= +∞,

D2pH(x,p) � 0 for all (x,p) ∈ Tn ×Rn.

(H)

The connection between PDE and Hamiltonian dynamics can be summarized as follows.

Lagrangian Dynamics

d

dt
DvL(γ, γ̇) = DxL(γ, γ̇)

Hamiltonian system{
ẋ = DpH(x,p)
ṗ = −DxH(x,p).

Stationary
Hamilton-Jacobi PDE

H(x,Du(x)) = c in Tn.

The new object H(x,Du(x)) = c in Tn will be our main object of study in this chapter. This
arises in many areas like large time behavior, homogenization, canonical transformation
and ergodic theory.

(1) Invariant under Hamiltonian and Lagrangian flow. Calibrated curves and weak
KAM solutions.

(2) The ergodic constant, the existence of calibrated curves with respect to ergodic
constant and the existence of weak KAM solutions. We use heavily the object
following object

ht(x,y) = inf
{∫ t

0
L(γ(s), γ̇(s))ds : γ ∈ AC([0, t]; Tn) : γ(0) = x,γ(y) = t

}
.

(3) The Weak KAM theorem, which implies the existence of a (one-sided) calibrated
curve that exists for all time t→ −∞ (or t→∞).

(4) Properties of the weak KAM solution.

The ultimate goal is to describe solution to the ergodic problem H(x,Du(x)) = c in Tn.
We will also describe how it can be applied to find the large time behavior of solution
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u(x, t) to the Cauchy problem{
ut(x, t) +H(x,Du(x, t)) = 0 (x, t) ∈ Rn × (0, T),

u(x, 0) = g(x) (x, t) ∈ Rn × {0}.

We note that solution u(x, t) is strongly related to the following Hamiltonian system{
ẋ(t) = DpH(x(t),p(t)),
ṗ(t) = −DxH(x(t),p(t)).

3.2. Invariant under Hamiltonian and Lagrangian flow. The new object H(x,Du(x)) = c
in Tn is connected with the Hamiltonian and Lagrangian flows as we have the following
invariant of the graph of Du(·). We will show the invariant under weaker and weaker
regularity assumptions as follows.

C2(Tn) −→ C1(Tn) −→ Lip(Tn) −→ C(Tn).

Theorem 3.1 (Invariant under the Hamiltonian flow). Let u ∈ C2(Tn) solves H(x,Du(x)) =
c in Tn. For each x0 ∈ Tn, let p0 = Du(x0) and consider the Hamiltonian system{

ẋ(t) = DpH(x(t),p(t)),
ṗ(t) = −DxH(x(t),p(t)),

with initial condition (x(0),p(0)) = (x0,p0), then the system has solution for all time t ∈ R and
furthermore p(t) = Du(x(t)) for all t ∈ R. In particular, the Hamiltonian flow preserves the
graph of Du, i.e.,

φHt (Γ) ⊂ Γ for t ∈ R

where Γ = {(x,p) ∈ Tn ×Rn : p = Du(x)}.

Proof. Let (x(t), p(t)) be solution to the following ODEẋ(t) = DpH
(

x(t),Du
(
x(t)

))
, t > 0,

x(0) = x0
(3.1)

and p(t) = Du
(
x(t)

)
for t > 0. First of all, |Du(x)| 6 C in Tn by coercivity and thus

x 7→ DpH(x,Du(x)) for x ∈ Tn is Lipschitz (since u ∈ C2(Tn)), therefore solution x(t) exists
for all time t ∈ R and so is p(t). We will show that (x, p) satisfies the Hamiltonian system,
then the result follows from the uniqueness of Hamiltonian ODEs. From p(t) = Du

(
x(t)

)
we have

ṗ(t) = D2u(x(t)) · ẋ(t).
From H(x,Du(x)) = c for all t ∈ R we obtain

DxH(x,Du(x)) +D2u(x) ·DpH(x,Du(x)) = 0.

Plug in x = x(t), we obtain ṗ(t) = −DxH
(
x(t), p(t)

)
and the result follows. �

Remark 6. The idea of canonical transformation in classical mechanics is that, to solve
the Hamiltonian system of 2n variables, if one can find a solution for H(x,Du(x)) = c in
Tn (cell problem) then the system can be reduced to (3.1) which consists of n unknowns
only.
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We remark that the PDE can be defined if u ∈ C1(Tn) only. Our next goal is proving
the invariant of Γ under φHt when u ∈ C1(Tn) only. Recalling the relation between φHt
and φLt as in (2.10) is given by

L ◦φLt ◦L−1 = φHt

where L : (x, v) 7→ (x,DvL(x, v)) is a local Ck−1 diffeomorphism. Define

Γ̃ = L−1(Γ) = {(x,DpH(x,Du(x))) : x ∈ Tn}

we see that
φHt (Γ) ⊂ Γ ⇐⇒ φLt

(
Γ̃
)
⊂ Γ̃ .

In order words, it suffices to show Γ̃ is invariant under the Lagrangian flow. As we cannot
differentiate Du, we take a different path of going through the Lagrangian characteriza-
tion of C1(Tn) solution of H(x,Du(x)) = c in Tn using curves.

Definition 7 (Dominated). We say u is dominated by L+ c in Tn and denote by u ≺ L+ c if
u ∈ C(Tn) satisfying

u(γ(b)) − u(γ(a)) 6
∫b
a
L(γ(s), γ̇(s))ds+ c(b− a)

for every γ ∈ AC([a,b]; Tn). The set of all u ∈ C(Tn) which are dominated by L+ c is denoted
by Dc(Tn).

Remark 7. We only require a priori that u ∈ C(Tn) in the definition of Dc(Tn).

Lemma 3.2. We have the following:
(i) If u ∈Dc(Tn) then so is u+C for any C ∈ R,
(ii) Dc(Tn) is a closed convex subset of C(Tn).
(iii) If u ∈Dc(Tn) then u is Lipschitz with a Lipschitz constant depending only on L and c.

Proof. (i) and (ii) are obvious. For (iii), assume that u ∈ Dc(Tn) we show that u is
Lipschitz. Take y, z ∈ Tn and γ be the straight line connecting them with γ(0) = y and
γ(1) = z, let τ = |z− y| and v = z−y

|z−y| then

γ(s) = y+ sv, s ∈ [0, τ].

Clearly γ ∈ AC([0, τ]; Tn), thus since u ∈Dc(Tn) we obtain

u(z) − u(y) 6
∫τ
0
L(γ(s), v)ds+ cτ 6 C|y− z|.

where C = max{L(x, v) : x ∈ Tn, |v| 6 1}+ |c|. Reversing the roles of y, z we obtain the
Lipschitz property of u. �

Theorem 3.3 (Characterization of subsolutions).{
u ∈ Lip(Tn)

H(x,Du(x)) 6 c a.e. Tn.
⇐⇒ u ∈Dc(Tn).

Remark 8. If u ∈ C1(Tn) then the equivalence comes from the fundamental theorem of
calculus easily.
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Proof. Let u ∈ Lip(Tn) such that H(x,Du(x)) 6 c a.e. in Tn. Let {ηε}ε>0 ⊂ C∞c (Rn) be
the standard mollifiers and denote uε = ηε ∗ u then thanks to convexity and Jensen’s
inequality

H(x,Duε(x)) 6 c+ω(ε) in Tn.

By the fundamental theorem of calculus

uε(γ(b)) − uε(γ(a)) =

∫b
a
Duε(γ(s) · γ̇(s)ds

6
∫b
a

(
L(γ, γ̇) +H(γ),Duε(γ̇)

)
ds 6

∫b
a
L(γ, γ̇)ds+ c(b− a) +ω(ε)(b− a).

Let ε→ 0 we obtain that u ∈Dc(Tn). Conversely, let u ∈Dc(Tn) then we already known
that u is Lipschitz, thus it is differentiable a.e. in Tn. At a point x ∈ Tn where u is
differentiable, let γ(s) = x+ sv for |v| 6 1 and s ∈ [0, ε], we have

u(x+ εv) − u(x)

ε
6
1

ε

∫ ε
0
L(x+ sv, v)ds+ c.

Let ε→ 0+, since u is differentiabele at x, we obtain

Du(x) · v 6 L(x, v) + c

This is true for all v ∈ Rn, thus H(x,Du(x)) 6 c. �

Remark 9. This characterization can be relaxed to quasi-convex Hamiltonians (convex
level-sets), as there is a quasi-convex version of Jensen’s inequality, see for example [18].

Theorem 3.4. Let u ∈ C1(Tn) such that H(x,Du(x)) = c in Tn, then the graph Γ of Du is
invariant under the Hamiltonian flow φHt .

We will present a seemingly ad-hoc proof via the Lagrangian framework. The idea is
choosing an optimal curve in Theorem 3.3 such that the inequality is actually equality,
which renders subsolution into solution. We will need the following lemma, which
illustrates the idea about equality.

Lemma 3.5. Let u ∈ C1(Tn) solves H(x,Du(x)) = c in Tn. If γ : [a,b]→ Tn is a solution to

γ̇(s) = DpH
(
γ(s),Du(γ(s))

)
, s ∈ (a,b),

then

u(γ(b)) − u(γ(a)) =

∫b
a
L(γ(s), γ̇(s))ds+ c(b− a).

It follows that γ is a minimizer of the action over [a,b] with fixed endpoints γ(a),γ(b), thus
γ ∈ Ck and it satisfies the Euler-Lagrange equation.

Proof. By the duality Du(γ(s)) = DvL(γ(s), γ̇(s)) and

Du(γ(s)) · γ̇(s) = H(γ(s),Du(γ(s))) + L(γ(s), γ̇(s))

for s ∈ (a,b). Integrating we obtain the conclusion. �
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Proof of Theorem 3.4. To show that Γ̃ is invariant under φLt , for (x0,p0) ∈ Tn ×Rn, let
(x0, v0) = (x0,DpH(x0,p0)) ∈ Γ̃ . We consider{

γ̇(t) = DpH(γ(t),Du(γ(t))), t ∈ R,
γ(0) = x0.

As Du ∈ C(Tn) only, we have x 7→ F(x) = DpH(x,Du(x)) is in C(Tn), thus we have the
existence for all time5 (but not uniqueness) of γ(t) by Cauchy–Peano existence theorem.
Lemma 3.5 gives us γ ∈ Ck and γ satisfies the Euler-Lagrange equation (necessary con-
dition to apply the Lagrangian flow), which gives us that

φLt (x0, v0) =
(
γ(t), γ̇(t)

)
=
(
γ(t),DpH(γ(t),Du(γ(t)))

)
⊂ Γ̃ .

Therefore φLt (Γ̃) ⊂ Γ̃ and thus φHt (Γ) ⊂ Γ . �

Remark 10. The main idea of this ad-hoc proof, that is for any curve γ it is clear that∫b
a
Du(γ(s)) · γ̇(s)ds 6

∫b
a

(
L(γ(s), γ̇(s)) +H(γ(s),Du(γ(s)))

)
ds.

To achieve the equality, i.e., γ is optimal, we must choose γ̇(s) = DpH
(
γ(s),Du(γ(s))

)
.

Corollary 3.6. If u ∈ C1(Tn) solves H(x,Du(x)) = c in Tn then

Γ̃ = {(x,DpH(x,Du(x))) : x ∈ Tn}

is invariant under the Lagrangian flow φLt .

3.3. Calibrated curves and Weak KAM solutions.

Definition 8. Given a continuous function u ∈ C(Tn) and an open interal I ⊂ R, we say a
continuous and piece-wise C1 curve γ : I→ Tn is (L,u, c)-calibrated if for any a < b in I then

u(γ(b)) − u(γ(a)) =

∫b
a
L(γ(s), γ̇(s))ds+ c(b− a).

By definition, if γ is calibrated on [a,b] then γ is calibrated on [c,d] for any [c,d] ⊂ [a,b].

Theorem 3.7. If u ≺ L+ c and γ : I→ Tn is (L,u, c)-calibrated then γ ∈ Ck(I; Tn).

Proof. Take [a,b] ⊂ I, for any continuous and piece-wise C1 curve η : [a,b] → Tn with
fixed endpoints η(a) = γ(a) and η(b) = γ(b) we have

u(η(b)) − u(η(a)) 6
∫b
a
L(η(s), η̇(s))ds+ c(b− a).

γ(a)

γ(b)

5We have the existence on [−δ, δ] for small δ > 0 and we keep extending it to [−nδ,nδ].
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In other words, γ is a minimizer of L+ c in the class of continuous and piece-wise C1

curves connecting γ(a) and γ(b), thus γ ∈ Ck by Theorem 2.4. �

Theorem 3.8 (Characterization of C1-solutions). Let u ∈ C1(Tn) and c ∈ R. The followings
are equivalent.

(i) H(x,Du(x)) = c in Tn.
(ii) u ≺ L+ c and for each x ∈ Tn, there exists a (L,u, c)-calibrated curve γ : [−ε, ε] → Tn

with γ(0) = x.
(iii) u ≺ L+ c and for each x ∈ Tn, there exists a (L,u, c)-calibrated curve γ : [−ε, 0] → Tn

with γ(0) = x.
(iv) u ≺ L+ c and for each x ∈ Tn, there exists a (L,u, c)-calibrated curve γ : [0, ε] → Tn

with γ(0) = x.

Proof. For (i) implies (ii), it is clear that u ≺ L + c. As Du(·) ∈ C(Tn), we have x 7→
DpH(x,Du(x)) is continuous, hence by Cauchy-Peano theorem there exists ε > 0 such
that the following ODE has a classical solution{

γ̇(t) = DpH(γ(t),Du(γ(t))), t ∈ (−ε, ε),
γ(0) = x.

In fact one can extend this to γ : R → Tn since DpH(x,Du(x)) is bounded, which means
the number ε obtained in Cauchy-Peano construction is universal. Because of this choice,
we have

Du(γ(t)) · γ̇(t) = H(γ(t),Du(γ(t))) + L(γ(t), γ̇(t))
for t ∈ (−ε, ε), thus taking integration we obtain that γ is calibrated on its domain. For
(iv) implies (i), let us fix x ∈ Tn. For any t ∈ (0, ε) we have

u(γ(0)) − u(γ(−t)) =

∫0
−t
L(γ(s), γ̇(s))ds+ ct.

Dividing both sides by t and let t→ 0+ we deduce that

Du(γ(0)) · γ̇(0) = L(γ(0), γ̇(0)) + c.

Therefore
H(γ(0),Du(γ(0))) > Du(γ(0)) · γ̇(0) − L(γ(0), γ̇(0)) = c

and thus H(x,Du(x)) = c. �

Remark 11. The significant thing in this characterization is that (ii), (iii), (iv) do not
require u ∈ C1(Tn), thus one can generalized the notion of solution to the following.

Definition 9 (Weak KAM solutions of negative type). A function u ∈ C(Tn) is a weak KAM
solution of negative type to H(x,Du(x)) = 0 in Tn if

• u ≺ L+ c, and
• for each x ∈ Tn, there exists a (L,u, c)-calibrated curve γ : (−∞, 0]→ Tn with γ(0) = x.

Remark 12. The set of all weak KAM solutions of negative type is denoted by S−, and
such a calibrated curve γ is also called a backward characteristic (see [20]).
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Question 4. Let H(x,p) = 1
2 |p|

2 for (x, v) ∈ T×R. Characterize all solutions in Dc(T).

3.4. Ergodic constant. Recall that we have H(x,p) > −C for all (x,p) ∈ Tn ×Rn thanks
to super-linearity, we can define the following additive eigenvalue, or ergodic constant.

Definition 10 (Additive eigenvalue).

c(0) := inf
{
c ∈ R : ∃ u ∈ Lip(Tn) : H(x,Du(x)) 6 c a.e.

}
.

The constant c(0) is called Mañé critical value (in the language of dynamical system) or effective
Hamiltonian (in the language of PDEs via Homogenization), or ergodic constant.

It is clear that c(0) exists and is finite, since if we pick any u ∈ Lip(Tn) and denote
cu = esssupx∈TnH(x,Du(x)) then u ≺ L+ cu and thus −C 6 c(0) 6 cu. Roughly speaking,
for each P ∈ Rn there exists a unique constant c(P) such that H(x,P +Du(x,P)) = c can
be solved with a (reasonable) Lipschitz solutions u. If u ∈ C1, then one obtain a canonical
transformation in classical machanics that reduce the 2n unknowns Hamiltonian system
to n unknowns only.

Theorem 3.9 (inf− sup formula). We have

c(0) = inf
u∈Lip(Tn)

(
esssupx∈TnH(x,Du(x))

)
= inf
u∈C1(Tn)

max
x∈Tn

H(x,Du(x)).

Remark 13. In PDE, people often call c(0) the additive eigenvalue of the PDE, and the
second formula (inf-max formula) above is an analog of the inf formula for the principle
eigenvalue of elliptic PDE Lu = λu, where

λ = inf
ϕ∈H1

0(Ω)

〈Lϕ,ϕ〉
〈ϕ,ϕ〉

where the inner product is taken in L2(Ω).

Example 2. Let us see how to find c(0) when H(x,p) = 1
2 |p|

2−V(x) for (x,p) ∈ Tn×Rn, where
minTn V = 0. Naively, we have

c(0) = inf
ϕ∈C1(Tn)

max
x∈Tn

H(x,Dϕ(x)) > inf
ϕ∈C1(Tn)

(
max
x∈Tn

(−V(x))

)
= 0.

Choose φ ≡ 0 then c(0) 6maxx∈Tn(−V(x)) = 0, therefore c(0) = 0.

Remark 14. In the language of homogenization, the effective Hamiltonian is defined by

H(p) = inf
ϕ∈C1(Tn)

max
x∈Tn

(
H(x,p+Dϕ(x))

)
.

We have H(0) = c(0), and we know that H is convex. One of the open problem is to
understand deeply the behavior of H. In particular, where does H behaves nicely? What
is the set of singularities of H?

Theorem 3.10 (Existence). There exists u ∈ Lip(Tn) such that u ≺ L+ c(0). In other words,

H(x,Du(x)) 6 c(0) a.e. in Tn.

In fact, one can show that there exists u ∈ Lip(Tn) such that H(x,Du(x)) = c(0) a.e. in Tn

(or even a viscosity solution). One way is using the vanishing discount procedure in PDE.
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Proof. Let (uk, ck) ∈ Lip(Tn)×R such that uk ≺ L+ ck a.e. in Tn (H(x,D(uk) 6 ck) and
ck → c(0), the existence follows from the definition of c(0). Let ũk(x) = uk(x) −uk(0) then
ũk is bounded uniformly in Tn, thus by Arzelà-Ascoli theorem ũkj → u uniformly on Tn

for some u ∈ Lip(Tn). To show that u ≺ L+ c(0), pick γ ∈ AC([a,b]; Tn) we have

uk(γ(b)) − uk(γ(a)) 6
∫b
a
L(γ(s), γ̇(s))ds+ c(0)(b− a).

Let kj →∞ we obtain

u(γ(b)) − u(γ(a)) 6
∫b
a
L(γ(s), γ̇(s))ds+ c(0)(b− a)

and thus u ≺ L+ c(0). �

Remark 15. We use the Lagrangian framework here as it is clear and stable under uni-
form convergence. The PDE framework is harder a bit, as if we start with{

H(x,Dũk(x)) 6 ck a.e. in Tn,
ũk → u uniformly,

then it is harder to prove that H(x,Du(x)) 6 c(0) a.e., as Duk ⇀ Du is an issue here. It
can be resolved in the framework of viscosity solution.

Remark 16.
• If γ : (−∞, 0] → Tn is a calibrated curve with γ(0) = x, then some questions of

interest are
– Is there a rotation vector q = limt→−∞ γ(t)

t ?
– Ergodic behavior of γ.{

γ̇(s) = DpH(γ(s),Du(γ(s))), s < 0,
γ(0) = x.

Proposition 3.11 (Stability of calibrated curves). The following claims hold.
(a) If I =

⋃
k∈N Ik with Ii ⊂ I2 ⊂ . . . and γ : I→ Tn such that γ|Ik is (L,u, c)-calibrated then

γ is (L,u, c)-calibrated on I.
(b) Let {γk}k∈N ⊂ C1([a,b]; Tn) such that γk → γ in the topology of C1([a,b]; Tn). If γk is

(L,u, c)-calibrated for all k ∈N then so is γ.

Remark 17. In general, additive eigenvalues occur in all kinds of nonlinear elliptic PDE
that have a maximum principle. One particular example is

−∆u+ |Du|2 + V(x) = c(0) in Tn

where V ∈ C(Tn). This came from the rate function in large deviation theory. The relation
between the additive eigenvalue c(0) and the principle eigenvalue to Laplace equation
can be seen via a Hopf-Cole transform

ϕ(x) = e−u(x) =⇒ ∆ϕ = e−u(−∆u+ |Du|2)

=⇒ −∆ϕ− V(x)ϕ = −c(0)ϕ

and thus −c(0) is the principle eigenvalue of the operator −(∆+ V).
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Remark 18. Open question: −ε∆uε + |Duε|2 +V(x) = cε(0) in Tn. What is the behavior of
{uε} as ε → 0 and fine details of expansion of cε(0) − c(0)? Does uε(x) − uε(0) converges
uniformly in the full sequence to u solving |Du|2 + V = c(0)?

3.5. Existence of calibrated curves.

Theorem 3.12 (Relation between calibrated curve and ergodic constant). Assume u ≺ L+ c
and γ : I→ Tn is (L,u, c)-calibrated. If I is of infinite length then we must have c = c(0).

Proof. By Theorem 3.10 there exists v ∈ Lip(Tn) such that v ≺ L+ c(0), therefore for every
(a,b) ⊂ I we have

u(γ(b)) − u(γ(a)) =

∫b
a
L
(
γ(s), γ̇(s)

)
ds+ c(b− a)

v(γ(b)) − v(γ(a)) 6
∫b
a
L
(
γ(s), γ̇(s)

)
ds+ c(0)(b− a).

We deduce that
0 6

(
c− c(0)

)
(b− a) 6

√
n
(

Lip(u) + Lip(v)
)

.

Therefore if I is unbounded we must have c = c(0) (the critical value). �

Corollary 3.13. In order to have a weak KAM solution of negative (or positive) type, we must
have c = c(0).

Lemma 3.14. Let u ≺ L+ c and γ : [a,b] → Tn be a (L,u, c)-calibrated curve. If u is differen-
tiable at γ(t) for t ∈ (a,b) then the gradient Du(γ(t)) can be computed as{

Du(γ(t)) = DvL(γ(t), γ̇(t))
H(γ(t),Du(γ(t))) = c.

Proof. As a calibrated curve, γ ∈ Ck(a,b). If u is differentiable at t0 ∈ (a,b) then

u(γ(t)) − u(γ(t0)) =

∫ t
t0

L(γ(s), ˙γ(s))ds+ c(t− t0).

Since u is differentiable at γ(t0), we obtain

Du(γ(u(t0))) · γ̇(t0) = L(γ(t0), γ̇(t0)) + c.

Thus c = H (γ(t0),Du(γ(t0))) and Du(γ(t)) = DvL(γ(t), γ̇(t)) for any t ∈ (a,b). �

Theorem 3.15. If u ≺ L+ c and γ : [a,b]→ Tn is a (L,u, c)-calibrated curve then u is differen-
tiable at γ(t) for all t ∈ (a,b) (however it may fail to be differentiable at the two end-points).

Remark 19. The idea of the proof can be easy understood using the language of viscosity
solution, or superdifferential. Basically, we show that at any point γ(t), the supergradient
and subgradient of u are the same and contain only one vector, which is ∇u(γ(t)). To
do so, we construct C1 functions that touch u from above and below, and show that their
gradients are the same.
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Proof. Ley y near x = γ(t), we can construct naturally curves that going from γ(a) to γ(b)
passing y naturally by shifting γ. Let us define

η(s) = γ(s) +

(
s− a

t− a

)
(y− x), s ∈ [a, t].

Clearly η(a) = γ(a) and η(t) = y, using u ≺ L+ c we have

u(η(t)) − u(η(a)) 6
∫ t
a
L(η(s), η̇(s))ds.

Therefore

u(x) 6 u(η(a)) +
∫ t
a
L
(
γ(s) + s−a

t−a (y− x), γ̇(s) +
(y−x)
t−a

)
ds.︸ ︷︷ ︸

ϕ(y)

It is crucial that
γ is calibrated =⇒ ϕ(x) = u(x)

and u 6 ϕ for all y near x. It is clear that y 7→ ϕ is continuously differentiable, hence
Dϕ(x) ∈ D+u(x). Similarly, we can define

ζ(s) = γ(s) +
b− s

b− t
(y− x), s ∈ [t,b].

Clearly ζ(b) = γ(b) and ζ(t) = y, using u ≺ L+ c we have

u(η(b)) − u(η(t)) 6
∫b
t
L(ζ(s), ζ̇(s))ds.

Therefore

u(x) > u(ζ(b)) −
∫b
t
L
(
γ(s) + b−s

b−t (y− x), γ̇(s) +
(y−x)
b−t

)
ds.︸ ︷︷ ︸

ψ(y)

Again, ψ(x) = u(x) and ψ(y) 6 u(x) for y near x, therefore Dψ(x) ∈ D−u(x). However,
ϕ−ψ > 0 everywhere and (ϕ−ψ)(x) = 0, thus Dϕ(x) = Dψ(x), hence u is differentiable
at x = γ(t). �

Remark 20. We can actually show directly that

Dϕ(x) = Dψ(x) = DvL(γ(t), γ̇(t))

as follows. As γ satisfies the Euler-Lagrange equation, we have

Dϕ(x) =
1

t− a

∫ t
a

[
(s− a)

d

ds
(DvL(γ, γ̇)) +DvL(γ, γ̇)

]
ds

=
1

t− a

∫ t
a

d

ds

[
(s− a)DvL(γ(s), γ̇(s))

]
ds = DvL(γ(t), γ̇(t)).

The existence of a calibrated curve and the weak KAM theorem are strongly related.
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Theorem 3.16 (Weak KAM theorem). There exists u ∈ Lip(Tn) such that u ≺ L+ c(0) and
for every x ∈ Tn, we can find a calibrated curve γ : (−∞, 0] → Tn with γ(0) = x, i.e., for all
t, t ′ > 0 then

u(γ(t ′)) − u(γ(t)) =

∫ t ′
t

(
L(γ(s), γ̇(s)) + c(0)

)
ds.

We will prove this Theorem after some more preparations.

Remark 21. We have shown that in such a situation, u is differentiable at γ(t) for all
t ∈ (−∞, 0). It might be the case that u is not differentiable at the end point x = γ(0).

Remark 22. One may keep running the Lagragian flow passing t = 0 with the velociy
γ ′(0−) to have a nice, smooth curve defined for the whole R → Tn. However, there is
nothing to guarantee that this curve is calibrated, since a minimizer of the problem

u(γ(t)) − u(γ(t ′)) =

∫ t
t ′
L(γ(s), γ̇(s))ds+ (t− t ′)c(0)

is a solution to the Euler-Lagrange equation (a solution to the Lagrangian flow) but the
inverse may not be true.

3.6. Minimal action for a given time. We define ht(x,y) to be the minimal cost it takes
to travel from x→ y in a fixed amount of time t > 0.

Definition 11. For given x,y ∈ Tn, denote by

ht(x,y) = inf
γ∈AC([0,t];Rn)

{∫ t
0
L(γ(s), γ̇(s))ds : γ(0) = x,γ(t) = y

}
. (3.2)

Remark 23. We note that ht(x,y) is not a new object, but in this section we focus on the
dependence of ht on (x,y) more systematically. We can think of ht(x,y) as some sort of
distance from x to y.

Proposition 3.17 (Properties of ht). We have the following:
1. ht(x,y) > t

(
inf(x,v) L(x, v)

)
.

2. (Dynamic programming principle) For x,y ∈ Tn and t, t ′ > 0 we have

ht+t ′(x,y) = inf
z∈Tn

(
ht(x, z) + ht ′(z,y)

)
.

3. If u ∈ C(Tn) with u ≺ L+ c then u(y) −u(x) 6 ht(x,y) + ct for all x,y ∈ Tn and t > 0.
4. There exists an extremal curve (critical point of the action functional) γ ∈ Ck([0, t]) such

that

ht(x,y) =
∫ t
0
L(γ(s), γ̇(s))ds.

5. We have ht(x, x) + c(0)t > 0.
6. For each u ∈ S− and t0 > 0, there exists a constant C = C(u, t0) such that for all t > t0

there holds

−2‖u‖L∞(Tn) 6 ht(x,y) + c(0)t 6 2‖u‖L∞(Tn) +C.

We postpone the uniform Lipschitz property of ht(·, ·) for t > δ > 0.
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Proof. We observe that (1) and (3) are obvious, while (4) follows from the existence of a
Ck minimizer, which is also an extremal curve. To show (2), let γ connecting x to y in
time t and ζ connecting y to z in time t ′, connecting them we have a curve η that connects
x to z in time t+ t ′, hence∫ t+t ′

0
L(η, η̇)ds =

∫ t
0
L(γ, γ̇) +

∫ t+t ′
t

L(ζ(s− t), ζ̇(s− t))ds =
∫ t
0
L (γ, γ̇)ds+

∫ t ′
0
L
(
ζ, ζ̇
)
ds.

Taking the infimum we have ht+t ′(x, z) 6 ht(x,y) + ht ′(y, z), therefore

ht+t ′(x,y) 6 inf
z∈Tn

(
ht(x, z) + ht ′(z,y)

)
.

x

z

ht(x, z)

y

ht ′(z,y)

Conversely, for every curve curve γ connecting x to y in time t+ t ′, we can pick z = γ(t),
then obviously the reverse inequality holds.
For (5), if t > 0 and x ∈ Tn, take a weak KAM solution u ∈ S−, then6 as u ≺ L+ c(0), we
find that

0 = u(x) − u(x) 6 ht(x, x) + c(0)t.

For (6), the lower bound is rather obvious. The upper bound is more important as we
need it to be uniform for t > t0. Let ξ : (−∞, 0] → Tn be a calibrated curve ending at
ξ(0) = y. For t > t0, we pick z = ξ(t0 − t) and connect x → z by finding a minimizer
γ : [0, t0]→ Tn with γ(0) = and γ(t0) = z and

ht0(x, z) =
∫ t0
0
L(γ(s), γ̇(s))ds.

We have |ht0(x, z)| 6 C(t0) independent of z. Indeed, simply using the straight line
η(s) = x+ (s/t0)(z− x) then7

ht0(x, z) 6
∫ t0
0
L

(
x+

s

t0
(z− x),

z− x

t0

)
ds 6 t0

 sup
Tn×B(0,

√
n/t0)

L(x, v)

 .

We have

η(s) =

{
γ(s) s ∈ [0, t0]
ξ(s− t) s ∈ [t0, t]

is a path connecting x and y.

6Actually here any Lipschitz function u that is a subsolution to H(x,Du) 6 c(0) is enough, the existence
of such a solution follows from Theorem 3.10.

7We could do better by using the fact that as a minimizer, the velocity |γ̇(·)| is bounded uniformly, then
we might not need the boundedness of the torus here.
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x

z = ξ(t0 − t)

y

ξ(·)

γ(·)

The key is along the calibrated curve we have optimality

ht(x,y) + c(0)t 6
∫ t
0
L(η(s), η̇(s))ds+ c(0)t

=

∫ t0
0

(
L(γ(s), γ̇(s)) + c(0)

)
ds︸ ︷︷ ︸

C(t0)

+

∫ t−t0
t0

(
L(ξ(s), ξ̇(s)) + c(0)

)
ds︸ ︷︷ ︸

u(t−t0)−u(t0)

6 C(t0) + 2‖u‖L∞(Tn).

�

Remark 24. Fix x ∈ Tn, y 7→ ht(x,y) can be thought of as a fundamental solution to{
Φt(y, t) +H(z,DΦ(y, t)) = 0 in Tn × (0,∞),
Φ(y, 0) = δx(y).

In other words, ht(x,y) = Φ(y, t).

Lemma 3.18. For each t > 0, there exists Ct > 0 such that

ht(x,y) 6 Ct for all x,y ∈ Tn.

Consequently, for each σ > 0, there exists Kσ > 0 such that if t > σ then all minimizer γ satisfies
|γ̇(s)| 6 Kσ for s ∈ [0, t], i.e., if |γ̇(t0)| 6 Kσ for some t0 then |γ̇(t)| 6 Kσ for all t > t0.

Proof. We connect x to y by a straight line γ(s) = x+ s
t (y− x) for s ∈ [0, t], then obviously

ht(x,y) 6
∫ t
0
L (γ, γ̇)ds 6 tmax

z∈Tn

{
L(x, v) : |v| 6

√
n

t

}
.

therefore we can choose

Ct = tmax
z∈Tn

{
L(x, v) : |v| 6

√
n

t

}
.

Since γ ∈ Ck([0, t]; Tn), the above equation implies that there exists t0 ∈ (0, t) such that

L(γ(t0), γ̇(t0)) 6 C̃t, C̃t = max
z∈Tn

{
L(x, v) : |v| 6

√
n

t

}
.

It is clear that t 7→ C̃t is decreasing, thus if t > σ then C̃t 6 C̃σ. With that fixed σ, we
proceed to get t0 ∈ (0, t) such that

L(γ(t0), γ̇(t0)) 6 C̃σ.
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Since L is super-linear, there exists Kσ such that

|γ̇(t0)| 6 Kσ =⇒ |p(t0)| = |DvL(γ(t0), γ̇(t0))| 6 K̃σ.

By conservation of energy, H(γ(s),p(s)) = H(γ(t0),p(t0)) for all s ∈ (0, t), thus

H(γ(s),p(s)) 6 Kσ =⇒ |p(s)| 6 Kσ ∀ s ∈ (0, t).

In turns we obtain that
|γ̇(s)| = |DpH(γ(s),p(s))| 6 Kσ

as well. �

Remark 25. The essence of this lemma is that, to go from x to y in a time t, if t → 0+

then the total cost blows up. For example, with a constant speed line segment then
v = y−x

t →∞ as t→ 0, we have∫ t
0
L(η(s), η̇(s))ds =

∫ t
0
L

(
η(s),

y− x

t

)
ds→∞

as t→ 0+ since L is superlinear. However, if t > σ > 0 for some fixed σ > 0 then the cost
remains bounded.

Theorem 3.19. For each σ > 0, there exists Cσ > 0 such that ht : Tn ×Tn → R is Lipschitz
with constant Cσ for all t > σ.

Proof. Fix (x,y) and (x̂, ŷ) in Tn ×Tn. Take a minimizer path γ : [0, t] → Tn with γ(0) =
x,γ(t) = y and

ht(x,y) =
∫ t
0
L(γ(s), γ̇(s))ds

Fix ε > 0, let z1 = γ(ε) and z2 = γ(t− ε), we connect x̂, ŷ as following.

x̂
ŷ

x = γ(0)

y = γ(t)

γ(·)
z1 = γ(ε)

z2 = γ(t− ε)

Let us define

η(s) =


γ(s) + ε−s

ε (x̂− x) s ∈ [0, ε]
γ(s) s ∈ [ε, t− ε]
γ(s) +

s−(t−ε)
ε (ŷ− y) s ∈ [t− ε, t]
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we obtain a curve connecting x̂ to ŷ in time t. We have

ht(x̂, ŷ) − ht(x,y) =
∫ ε
0

[
L

(
γ(s) +

ε− s

ε
(x̂− x), γ̇(s) −

x̂− x

ε

)
− L(γ(s), γ̇(s))

]
ds

+

∫ t
t−ε

[
L

(
γ(s) +

s− (t− ε)

ε
(ŷ− y), γ̇(s) +

ŷ− y

ε

)
− L(γ(s), γ̇(s))

]
ds.

Let us consider |x̂− x|+ |ŷ− y| 6 σ. Since t > σ, from Lemma 3.18 we have |γ̇(s)| 6 Kσ for
all s ∈ [0, t]. We see that |η̇(s)| 6 |γ̇(s)|+ σ

ε . Choose ε = 1
4ε we obtain that

|η̇(s)| 6 K̃σ = Kσ + 4 for s ∈ [0, t].

Thus there exists Cσ such that

|L(x1, v1) − L(x2, v2)| 6 Cσ
(
|x1 − x2|+ |v1 − v2|

)
for |v1|, |v2| 6 K̃σ.

We deduce that
ht(x̂, ŷ) − ht(x,y) 6 Cσ(|x̂− x|+ |ŷ− y|)

and by symmetry we obtain

|ht(x̂, ŷ) − ht(x,y)| 6 Cσ(|x̂− x|+ |ŷ− y|).

If |x̂− x|+ |ŷ− y| > σ, then since we are in Tn, after a fixed finite mσ ∈ N middle points
we can obtain the same estimate with Cσ replaced by mσCσ. �

Remark 26.

1. It is important to note that even as t→∞, the Lipchistz constant of (x,y) 7→ ht(x,y)
remains Cσ.

2. As t→ 0+ howerver, the Lipschitz constant blows up and Cσ →∞ as σ→ 0. Since

|γ̇| 6 C̃t = max
{
|L(x, v)| : x ∈ Tn, |v| 6

√
n

t

}
.

3.7. The Lax–Oleinik semigroup (Optimal control formula). Given g ∈ C(Tn), we
can define

u(x, t) = inf
y∈Tn

{
ht(y, x) + g(y)

}
.

From the viewpoint of Bellman, for t > 0 we have

1. u(x, t) = g(y0)+
∫t
0 L(γ(s), γ̇(s))ds for some y0 ∈ Tn and γ ∈ Ck([0, t]; Tn) minimizer

with γ(0) = y0 and γ(t) = x.
2. u(x, 0) = g(x) on Tn and a regularizing effect, even though we start with con-

tinuous only datum u(x), instantaneously for t > 0 then u(x, t) is Lipschitz with
constant at most Ct.

3. Dynamic programming principle:

u(x, t+ σ) = min
y∈Tn

[
u0(y) + ht+σ(y, x)

]
= min
y∈Tn

[
u0(y) +

(
min
z∈Tn

ht(y, z) + tσ(z, x)
)]

= min
z∈Tn

[
u(z, t) + hσ(z, x)

]
.
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We can show u(x, t) is a viscosity solution to the Hamilton–Jacobi equation{
ut(x, t) +H(x,Du(x, t)) = 0 in Tn × (0,∞),
u(x, 0) = u0(x).

We introduce the following new subject, which is motivated from the formulation above.

Definition 12 (Lax-Oleinik semigroup). T−t : C(Tn)→ C(Tn) is defined by

T−t u(x) = inf
y∈Tn

{
ht(y, x) + u(y)

}
= inf

{∫ t
0
L(γ(s), γ̇(s))ds+ u(γ(0)) : γ ∈ AC([0, t]; Tn),γ(t) = x

}
for t > 0, and T−0 u = u.

Remark 27. We can define the Lax-Oleinik semigroup for all function u : Tn → R but we
restrict ourselve to C(Tn) to avoid technicalities.

This object is well-defined from the following proposition.

Proposition 3.20 (Preliminaries properties of T−t for t > 0). We have the following
(i) min

Tn
u+ t min

Tn×Rn
L 6 T−t u 6min

Tn
u+ max

Tn×Tn
ht(·, ·).

(ii) If t > σ > 0 then x 7→ T−t u(x) is Lipschitz with constant Kσ.

Proof. The property (i) is rather obvious. For (ii), let x, z ∈ Tn, we can find x ∈ Tn so that
T−t u(x) = u(x) + ht(x, x) and T−t u(z) 6 u(x) + ht(x, z), thus

T−t u(z) − T
−
t u(x) 6 ht(x, z) − ht(x, x) 6 Cσ|x− z|

by Theorem 3.19. By symmetry we have the conclusion. �

Proposition 3.21 (Semi-group properties of T−t for t > 0). We have the following
(i) T−t+s = T

−
t ◦ T−s and T−t (u+ c) = T−t u+ c for c ∈ R.

(ii) If u, v ∈ C(Tn) and u 6 v in T−t u 6 T
−
t v (monotonicity).

(iii) If u = infi∈I ui for a family {ui}i∈I ⊂ C(Tn) then T−t u = infi∈I T−t ui.

Proof. From the Dynamic Programming Principle of ht (Theorem 3.17) we have

T−t+su(x) = inf
y∈Tn

[u(y) + ht+s(y, x)]

= inf
y∈Tn

[
u(y) + inf

z∈Tn

(
ht(y, z) + hs(z, x)

)]
= inf
z∈Tn

[
hs(z, x) + inf

y∈Tn

(
u(y) + ht(y, z)

)]
= inf
z∈Tn

(
hs(z, x) + T−t u(z)

)
= T−s

(
T−t u(x)

)
.

The identity T−t (u+ c) = T−t u and the monotonicity are obvious. Lastly, if u = infi∈I ui
then it is clear from the monotonicity that T−t u 6 infi∈I T−t ui. Conversely, fix x ∈ Tn we
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show that infi∈I T−t ui(x) 6 T
−
t u(x). For any ε > 0 there exists i ∈ I so that ui(x) − ε < u(x),

then

inf
i∈I
T−t ui(x) − ε 6 T

−
t ui(x) − ε = T

−
t

(
ui(x) − ε

)
6 T−t u(x)

Let ε→ 0 we obtain the conclusion. �

Remark 28 (Hopf-Lax formula). In case H(x,p) = H(p), which implies L(x, v) = L(v) then
the Hopf-Lax formula can be deduced directly from the Lax-Oleinik semi-group. Let
u0 ∈ C(Tn) be the initial condition, we have

T−t u0(x) = inf
y∈Tn

[
u0(y) + ht(y, x)

]
= inf
y∈Tn

[
u0(y) + inf

γ(0)=y,γ(t)=x

∫ t
0
L(γ̇(s))ds

]
.

By Jensen’s inequality we have

1

t

∫ t
0
L(γ̇(s))ds > L

(
1

t

∫ t
0
γ̇(s)ds

)
= L

(
x− y

t

)
and the inequality can be achieved by choosing γ as a straight line, thus

T−t u(x) = inf
y∈Tn

[
u0(y) + tL

(
x− y

t

)]
.

Corollary 3.22 (Non-expansive property of the semigroup). For u, v ∈ C(Tn) and t > 0

then ‖T−t u− T−t v‖L∞(Tn) 6 ‖u− v‖L∞(Tn). As a consequence t 7→ ‖T−t u− T−t v‖L∞(Tn) is non-
increasing.

Remark 29. Because of this non-expansive property, we can approximate solution T−t u
by nice initial data uk → u uniformly where uk ∈ Lip(Tn) instead.

Proposition 3.23. For a given u ∈ C(Tn) we have limt→0+ T
−
t u = u and t 7→ T−t u is uniformly

continuous.

Proof. We have

T−t u(x) = inf
y∈Tn

(
u(y) + ht(y, x)

)
6 u(x) + ht(x, x) 6 u(x) + tL(x, 0)

by choosing γ(s) = x for x ∈ [0, t], thus lim supt→0+ T
−
t u(x) 6 u(x). We can reduce the

problem to showing for u ∈ Lip(Tn). For any γ ∈ AC([0, t], Tn) with γ(t) = x we observe
that by superlinearity, L(x, v) > C|v|−C for v ∈ Rn, thus

u(γ(0)) +

∫ t
0
L(γ(s), γ̇(s))ds > u(γ(0)) +C

∫ t
0
|γ̇(s)|ds−Ct

> u(x) −C|γ(t) − γ(0)|+C

∣∣∣∣∫ t
0
γ̇(s)ds

∣∣∣∣−Ct
= u(x) −C|γ(t) − γ(0)|+C |γ(t) − γ(0)|−Ct.

Thus lim inft→0+ T−t u(x) > u(x). We also have that |T−t u(x) − u(x)| 6 Ct. �
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Corollary 3.24. Fix σ > 0, then the family of functions {T−t u : u ∈ C(Tn)} is equi-Lipschitz on
Tn × [σ,∞). As a consequence, T−t

(
C(Tn) ∩ B(0,R)

)
is pre-compact in C(Tn) for t > σ and for

any R > 0.

Remark 30. Here we have the regularizing effect, that is T−t u is Lipschitz both in space
and time immediately when t > 0, even though we only started with u ∈ C(Tn).

Question 5. Show that if u ∈ Lip(Tn) then |T−t u(x) − T
−
t u(y)| 6 C|x− y| for all x,y ∈ Tn and

for all t > 0.

Now we are ready to prove Theorem 3.16.

3.8. The weak KAM theorem proof via dynamical system.

Theorem 3.25. There exists u− ∈ C(Tn) such that

T−t u− + c(0)t = u− for all t > 0.

Proof. Let u ∈ C(Tn) such that u ≺ L+ c(0), i.e., H(x,Du(x)) 6 c(0) a.e. in Tn. We show8

t 7→
(
T−t u+ c(0)t

)
is increasing (as a function in C(Tn)).

• We show u(x) 6 T−t u(x) + c(0)t for all t > 0. Take any γ ∈ AC([0, t]; Tn) with
γ(0) = y and γ(t) = x, we have u ≺ L+ c(0), thus

u(x) 6 u(y) +
∫ t
0
L(γ(s), γ̇(s))ds+ c(0)t.

Taking infimum over all γ connecting y to x in time t and then over all y ∈ Tn we
obtain u(x) 6 T−t u(x) + c(0)t.
• If 0 < t < t ′ we have u 6 T−t ′−tu+ c(0)(t ′ − t). Using the semigroup property

T−t u 6 T
−
t ◦ T

−
t ′−tu+ c(0)(t ′ − t) = T−t ′u+ c(0)(t ′ − t)

which gives is the desired property.
Now we show that there exists C > 0 such that

|T−t u(x) + c(0)t| 6 C for all x ∈ Tn, t > 0.

As u ∈ Lip(Tn), (x, t) 7→ T−t u(x) is globally Lipschitz. We observe that, if for any t > 0
there exists xt ∈ Tn such that T−t u(xt) + c(0)t 6 u(xt) then by the Lipschitz property

T−t u(x) + c(0)t 6 u(xt) +C|x− xt| 6 C

and hence we have boundedness. Thus assume the contrary that, there exists r > 0 such
that, there exists δ > 0 and

T−r u(x) + c(0)r > u(x) + δ

for all x ∈ Tn, we will derive a contradiction. Using the semigroup property we have

T−mru(x) + c(0)mr > u(x) +mδ =⇒ T−mru(x) + ζmr > u(x)

8Universal PDE phenomenon: take a subsolution and run the PDE, then we increasing sequence.
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for all x ∈ Tn and m ∈N and ζ = c(0) − δ
r > 0. This allows us to define

w(x) = inf
t>0

(
T−t u(x) + ζt

)
= inf
06t6r

(
T−t u(x) + ζt

)
.

It is clear that w(x) 6 u(x) and w ∈ Lip(Tn). By the property of the semigroup we have

T−s (w+ ζs) = T−s

(
inf
t>0

(
T−t u(x) + ζt

)
+ ζs

)
= inf
t>0

(
T−t+su(x) + ζ(t+ s)

)
> w(x).

Take any path γ ∈ AC([0, s]; Tn) then

w(γ(s)) 6 T−s (w+ ζs) = T−s w+ ζs 6 w(γ(0)) +
∫ s
0
L(γ(τ), γ̇(s))dτ+ ζs.

In other words, we have w ≺ L+ ζ, thus H(x,Dw(x)) 6 ζ < c(0), which is a contradiction
to the definition of c(0). Now |T−t u(x) + c(0)t| and is bounded, equi-Lipschitz for t > σ
and increasing, thus we can define

u−(x) = lim
t→∞

(
T−t u(x) + c(0)t

)
.

We show that v is the function that satisfies T−t u− + c(0)t = u−. By continuity (uk → u

then T−t uk → T−t u) we have

T−s u−(x) + c(0)s = T
−
s

[
lim
t→∞

(
T−t u(x) + c(0)t

)]
+ c(0)s

= lim
t→∞ T−t

(
T−s u(x) + c(0)t+ c(0)s

)
= lim
t→∞

(
T−t+su(x) + c(0)(t+ s)

)
= u−(x).

�

Remark 31. In general u− is not unique, in the next part of the note we will characterize
solutions to H(x,Du(x)) = c(0) ∈ Tn in terms of minimizing measures.

3.9. The weak KAM theorem proof via fixed point theorem.

Theorem 3.26 (Using Schauder’s fixed point theorem). There exists u− ∈ C(Tn) such that

T−t u− + c(0)t = u− for all t > 0.

Proof using Schauder’s fixed point theorem. Let E = C(Tn)/R, we view each element of E as
[u] and [u1] = [u2] if u1 = u2 + C for some constant C ∈ R. Also ‖[u]‖E = infc∈R ‖u +

c‖L∞(Tn).

• As T−t (u+ c) = T−t u+ c we can view T−t : E→ E.
• We recall that for each σ > 0, the family {T−t u(x) : (x, t) ∈ Tn × [σ,∞)} is equi-

Lipschitz. In other words, for each fixed σ > 0 we see that T−σ (E) is equi-Lipschitz
in Tn with constant Cσ and thus for all [ϕ] ∈ E then ‖[ϕ]‖E 6 Cσ

√
n.

• By Arzelà–Ascoli theorem, T−σ (E) is compact in E, thus by Schauder’s fixed point
theorem there exists [uσ] ∈ E such that

T−σ ([uσ]) = [uσ] =⇒ T−kσ ([uσ]) = [uσ]

for all k ∈N.
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• Let σ = 2−j and [uj] ∈ E be the fixed point of T−
2−j

(
[uj]
)
= [uj], then

T−
k2−j

(
[uj]
)
= [uj] for all k ∈N.

By choosing different values of k we obtain that

T−t
(
[uj]
)
= [uj] for all t > 0.

Consequently, we deduce that

T−t ([u]) = [u] for all t > 0.

• For each t > 0 we can find ct ∈ R such that T−t u = u+ ct, which means t 7→ ct is
additive

ct+s = ct + cs for all s, t > 0.

It is also clear that t 7→ ct is continuous since t 7→ T−t u is continuous, thus ct =
(−c)t for some constant c ∈ R, then T−t u+ ct = u for t > 0.

The fact that c = c(0) come indirectly later, as we will show that if T−t u+ ct = u for all t
then u is a weak KAM solution of the negative type, that is for each x ∈ Tn there exists
a backward characteristic γx : (−∞, 0] → Tn with γ(0) = x. Theorem 3.12 gives us that
c = c(0). �

Proof of Theorem 3.16. Now we show that the existence of u ∈ C(Tn) with T−t u+ ct = u

for all t > 0 implies the existence of a backward characteristic curve ending at x for any
x ∈ Tn.

• Fix x ∈ Tn, note that u(x) = T−1 u(x) + c. There exists a minimizer γ : [−1, 0] → Tn

with γ(0) = x that realizes T−1 u(x), that is

u((x) =

(
u(γ(−1)) +

∫0
−1
L(γ(s), γ̇(s))ds

)
+ c.

• We have u(γ(−1)) = T−−1u(γ(−1)) + c, thus we can choose γ : [−2,−1] → Tn that
realizes T−1u(γ(−1)), i.e.,

u(γ(−1)) =

(
u(γ(−2)) +

∫−1
−2
L(γ(s), γ̇(s))ds

)
+ c.

We can connect continuously so that γ : [−2, 0] → Tn is absolutely continuous with
γ(0) = x and

u(x) = u(γ(−2)) +

∫0
−2
L(γ(s), γ̇(s))ds+ 2c.

We can repeat this procedure to obtain γ : (−∞, 0] → Tn as a calibrated curve for u with
γ(0) = x. By Theorem 3.12 we have c = c(0) and furthermore γ ∈ Ck((−∞, 0]) satisfying
the Euler-Lagrange equation (minimizer on each interval [a,b] ⊂ (−∞, 0]). �

Remark 32. For each t > 0 we define µt as a probability measure on Tn ×Rn that is
supported in {(γ(s), γ̇(s)) : s ∈ [−t, 0]}. Then the behavior of γ(t)/t as t → −∞ can be
studied via the limiting measure µt ⇀ µ. These limiting measures are called Mather
measures.
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Remark 33. The weak KAM theorem gives us the existence of u0 ∈ C(Tn) such that

T−t u0(x) + c(0)t = u0(x) for x ∈ Tn.

In other words, if we run the Hamilton–Jacobi equation{
ut(x, t) +H(x,Du(x, t)) = 0 in Tn × (0,∞),
u(x, 0) = u0(x)

with this special initial datum u0 then solution is u(x, t) = u0(x) − c(0)t, a separable
solution. In this way, it is rather clear that we have another proof for the weak KAM
solution (solution to the cell problem) via PDE method, the vanishing discount problem
(see [20]).
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4. Mather measures and Mather set

Our standing assumptions through out this chapter will be the following.
L ∈ Ck(Tn ×Rn) for some k > 2,

lim|v|→∞ (infTn
L(x,v)
|v|

)
= +∞,

D2vL(x, v) � 0 for all (x, v) ∈ Tn ×Rn.

(L)

As usual, the natural corresponding assumptions on H follows.
H ∈ Ck(Tn ×Rn) for some k > 2,

lim|p|→∞ (infTn
L(x,p)
|p|

)
= +∞,

D2pH(x,p) � 0 for all (x,p) ∈ Tn ×Rn.

(H)

4.1. Outline.
(1) Flow invariant measure (under the Lagrangian flow), and the new representation

formula of c(0) by minimizing over measures.
(2) Mather measures (minimizing 〈µ,L〉 among flow invariant measures).
(3) Mather set M̃0 (closure of the union of supports of all Mather measures) and the

projected Mather set.
(4) Important property of point (x, v) ∈ M̃0: values of u− (the weak KAM solution)

along the flow at two endpoint is exactly the total cost (of L) along the flow.
(5) Compactness of M̃0, uniqueness set for weak KAM solutions and the Lipschitz

graph theorem.

The weak KAM theorem gives us the existence of u0 ∈ C(Tn) such that, for each x ∈ Tn

there exists a calibrated curve γ : (−∞, 0] → Tn absolutely continuous (actually it is Ck)
such that γ0(0) = x. We recall that u0 is differentiable at γ(t) for all t < 0 and

Du0(γ(t)) = DvL(γ(t), γ̇(t))

for al t < 0. The goal is now to study the behavior of γ(t) as t → −∞, in particular any
rotation vector γ(t)/t→ ξ ∈ Rn as t→ −∞.

4.2. Invariant measures under Euler-Lagrange flow. Let us recall that the Lagrangian
flow is defined by ΦLt (x, v) = (γ(t), γ̇(t)) where{

d
ds (DvL(γ(s), γ̇(s))) = DxL(γ(s), γ̇(s))ds, s 6= 0,(
γ(0), γ̇(0)

)
= (x, v).

Definition 13. A probability Radon measure µ ∈ P(Tn ×Rn) is an invariant measure or
invariant under the Euler-Lagrange flow if∫

Tn×Rn
ψ
(
φLt (x, v)

)
dµ(x, v) =

∫
Tn×Rn

ψ (x, v) dµ(x, v)

for all t > 0 and ψ ∈ BC(Tn ×Rn; R), the space of bounded continuous functions.
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With this definition, we have a new formula to compute c(0).

Theorem 4.1. Let PL be the set of flow invariant Radon measures µ ∈ P(Tn ×Rn), we have

c(0) = − inf
µ∈PL

∫
Tn×Rn

L(x, v)dµ(x, v).

Proof. Take a flow invariant measure µ ∈ P(Tn ×Rn). For each (x, v) ∈ Tn ×Rn, we run
the Lagrangian flow φLt (x, v) = (ζx,v(t), ζ̇x,v(t)). Let u ∈ C(Tn) be the weak KAM solution,
since u ≺ L+ c(0) we have

u
(
π ◦ΦL0(x, v)

)
− u

(
π ◦ΦL−1(x, v)

)
6
∫0
−1
L
(
ΦLt (x, v)

)
dt+ c(0) (4.1)

where π : Tn ×Rn → Tn be the natural projection. Denote ũ(x, ξ) = u(x) on Tn ×Rn,
then

u
(
π ◦φLt (x, v)

)
= ũ

(
φLt (x, v)

)
.

Integrating (4.1) with respect to µ, since µ is invariant we deduce that

0 =

∫
Tn×Rn

(
ũ
(
φL0(x, v)

)
− ũ

(
φL−1(x, v)

))
dµ(x, v)

6
∫0
−1

(∫
Tn×Rn

L
(
φLt (x, v)

)
dµ(x, v)

)
dt+ c(0)

=

∫0
−1

(∫
Tn×Rn

L(x, v)dµ(x, v)
)
dt+ c(0) =

∫
Tn×Rn

L(x, v)dµ(x, v) + c(0).

We deduce that

−c(0) 6 inf
µ∈PL

∫
Tn×Rn

L(x, v)dµ(x, v).

For the other direction, fix x0 ∈ Tn let γ : (−∞, 0] → Tn be a calibrated curve from the
weak KAM theorem, then for all t > 0 we have

u−(γ(0)) − u−(γ(−t)) =

∫0
−t
L(γ(s), γ̇(s))ds+ c(0)t.

Define µt ∈ P(Tn ×Rn) as

〈µt,ψ〉 =
∫

Tn×Rn
ψ(x, v) dµt(x, v) =

1

t

∫0
−t
ψ(γ(s), γ̇(s))ds for ψ ∈ BC(Tn ×Rn).

We have
u−(γ(0)) − u−(γ(−t))

t
=

∫
Tn×Rn

L(x, v)dµt(x, v) + c(0).

Since ‖γ̇‖L∞((−∞,0]) 6 C we see that

supp(µt) ⊂ Tn ×B(0,C) for all t < 0.

Assume ut ⇀ u weakly for some µ ∈ P(Tn ×Rn) as tj →∞, we deduce

−c0 =

∫
Tn×Rn

L(x, v)dµ(x, v).
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We have left to show that µ is a flow invariant measure. Take ψ ∈ BC(Tn ×Rn) we need
to show that ∫

Tn×Rn
ψ
(
φLκ(x, v)

)
dµ(x, v) =

∫
Tn×Rn

ψ(x, v)dµ(x, v)

for all κ > 0. By definition of µt we have∫
Tn×Rn

ψ
(
φLκ(x, v)

)
dµt(x, v) =

1

t

∫0
−t
ψ(γ(κ+ s), γ̇(κ+ s))ds

since γ satisfies the Euler-Lagrange equation. Thus we need to show

lim
tj→∞

1

tj

∫0
−tj

ψ(γ(κ+ s), γ̇(κ+ s))ds =
∫

Tn×Rn
ψ(x, v)dµ(x, v).

By definition of µt we already have

lim
tj→∞

1

tj

∫0
−tj

ψ(γ(s), γ̇(s))ds =
∫

Tn×Rn
ψ(x, v)dµ(x, v).

Therefore, we just need to compare the difference

1

tj

∣∣∣∣∣
∫0
−tj

ψ(γ(s), γ̇(s))ds−
∫0
−tj

ψ(γ(κ+ s), γ̇(κ+ s))ds

∣∣∣∣∣
=
1

tj

∣∣∣∣∣
∫0
−tj

ψ(γ(s), γ̇(s))ds−
∫κ
−(tj+κ)

ψ(γ(s), γ̇(s))ds

∣∣∣∣∣→ 0

as tj →∞ since κ is fixed. �

Example 3. Let η(t) = x+ vt for some irrational vector v, then {η(t) : t 6 0} is dense in Tn. If
we define the measure µt as above, i.e.,

〈µt,φ〉 =
1

t

∫0
−t
φ(η(s), η̇(s))ds

then if µt ⇀ µ it is not hard to see that µ ≡ dx× δv, where dx is the Lebesgue measure on Tn.
Indeed, let ψ(x) = φ(x, v) then

〈µt,φ〉 =
1

t

∫0
−t
φ (x+ sv, v)ds =

∫0
−1
ψ(x+ tvξ)dξ.

Note that ∣∣∣∣∣
∫0
−1
ψ(x+ tvξ)dξ−

∫0
−1
ψ(x+ vξ)dξ

∣∣∣∣∣ 6 Ct
we deduce that

〈µ,φ〉 =
∫0
−1
φ(x+ vs, v)ds =

∫
Tn
φ(y, v)dy.

Therefore it is clear that µ ≡ dx× δv.
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4.3. Mather measures and Mather set. A flow invariant measure µ ∈ P(Tn ×Rn) that
minimizes 〈µ,L〉 is called a Mather measure, i.e.,

−c(0) =

∫
Tn×Rn

L(x, v)dµ(x, v).

Definition 14. The Mather set is defined by

M̃0 :=
⋃

µ Mather

supp(µ)

and the projected Mather set is defined by

M0 = π
(
M̃0

)
where π : Tn ×Rn → Tn is the natural projection π(x, v) = x.

Recall that if γ : (−∞, 0]→ Tn is (L,u, c(0))-calibrated then

u(γ(t ′)) − u(γ(t)) =

∫ t ′
t

(
L(γ(s), γ̇(s)) + c(0)

)
ds

for t, t ′ 6 0. This also holds for any Lagrangian flows started at any point (x, v) ∈M0, as
in the following Proposition.

Proposition 4.2. For any (x, v) ∈ M̃0 there holds

u
(
π ◦φLt ′(x, v)

)
− u

(
π ◦φLt (x, v)

)
=

∫ t ′
t

(
L
(
φLs (x, v)

)
+ c(0)

)
ds

where u is a weak KAM solution.

Proof. Since u ≺ L+ c(0), we have

u
(
π ◦φLt ′(x, v)

)
− u

(
π ◦φLt (x, v)

)
6
∫ t ′
t

(
L
(
φLs (x, v)

)
+ c(0)

)
ds. (4.2)

This holds for all (x, v) ∈ Tn ×Rn, thus taking integration against the Mather measure µ
we obtain

0 =

∫
Tn×Rn

(
u
(
π ◦φLt ′(x, v)

)
− u

(
π ◦φLt (x, v)

))
dµ(x, v)

6
∫ t ′
t

(∫
Tn×Rn

L(x, v)dµ(x, v) + c(0)
)
ds = 0.

Therefore the equality in (4.2) must happen for any (x, v) in the support of µ. By conti-
nuity we can extend the equality to (x, v) ∈ M̃0. �

Remark 34. If (x, v) ∈ M̃0 and (x(t), ẋ(t)) = φLt (x, v) for t ∈ R then by shifting the time
forward and backward we obtain that u is differentiable at all x(t) for t ∈ R, and

Du(x(t)) = DvL(x(t), ẋ(t))

which gives us
ẋ(t) = DpH(x(t),Du(x, t)).
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Therefore from the fact that H(x,Du(x)) = c(0) we have Du(x) is bounded, which implies
|ẋ| is bounded.

Corollary 4.3. Following Theorem 3.15, if (x, v) ∈ M̃0 then by choosing t < 0 < s and applying
Theorem 3.15 to the calibrated curve γ(t) = π ◦φLt (x, v) in (t, s) we deduce that any weak KAM
soltuion u− is differentiable at x and Du−(x) = DvL(x, v). Thus H(x,Du−(x)) = c(0) and

M̃0 ⊂
{
(x, v) : H

(
x,DvL(x, v)

)
= c(0)

}
.

Hence M̃0 is compact.

4.4. Uniqueness of weak KAM solution of negative type (uniqueness set).

Theorem 4.4. If u1,u2 ∈ C(Tn) are weak KAM solutions of negative type such that u1 ≡ u2 on
M0 then u1 ≡ u2 on Tn. We say M0 is a set of uniqueness.

Proof. Let γ : (−∞, 0] → Tn be a calibrated curve with respect to u1 with γ(0) = x0. For
t < 0 we have

u1(γ(0)) − u1(γ(t)) =

∫0
t
L(γ(s), γ̇(s))ds+ c(0)

u2(γ(0)) − u2(γ(t)) 6
∫0
t
L(γ(s), γ̇(s))ds+ c(0).

For any t < 0 we have

u2(x0) − u1(x0) 6 u2(γ(t)) − u1(γ(t)) =
1

tk

∫0
tk

(
u2(γ(s)) − u1(γ(s))

)
ds (4.3)

for any tk < 0. Define µt ∈ P(Tn ×Rn) as

〈µt,ψ〉 =
∫

Tn×Rn
ψ(x, v) dµt(x, v) =

1

t

∫0
−t
ψ(γ(s), γ̇(s))ds

for all ψ ∈ BC(Tn ×Rn). Let ũ(x, v) = u ◦ π(x, v) where π : Tn ×Rn → Tn is the natural
projection, we have

1

tk

∫0
tk

(
u2(γ(s)) − u1(γ(s))

)
ds =

∫
Tn×Rn

(ũ2 − ũ1)dµt.

Assume µt ⇀ u for some Mather measure µ (according to Theorem 4.1) as tk → ∞, we
obtain from (4.3) that

u2(x0) − u1(x0) 6
∫

Tn×Rn
(ũ2 − ũ1)dµ = 0

if u1 = u2 on supp(µ). By symmetry u1(x0) = u2(x0). �

4.5. The Lipschitz graph theorem. We show that a weak KAM solution u ∈ C(Tn) of
H(x,Du(x)) = c(0) can be C1,1 in the projected Mather set. We start by showing such a
weak KAM solution is semi-concave locally in x ∈M0.

Theorem 4.5. If u is a weak KAM solution then there exists C > 0 such that for all x ∈M0 and
h ∈ Rn we have

|u(x+ h) − 2u(x) + u(x− h)| 6 C|h|2.
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Proof. For (x, v) ∈ M̃0, we write (x(t), ẋ(t)) = φLt (x, v) for t ∈ R. By Proposition 4.2 we
have

u(x(1)) − u(x(0)) =

∫1
0
L(x(s), ẋ(s))ds+ c(0)

u(x(−1)) − u(x(0)) =

∫0
−1
L(x(s), ẋ(s))ds+ c(0)

The main idea is the path x(·) going from x(1) to x(0) or x(−1) to x(0) as above are optimal,
while if we perturb a bit to path going from x+h for h small then we have sub-optimality
instead. We build a path going from x+ h to x(1) and a path going from x− h to x(−1),
respectively, by

x+(s) = x(s) + (1− s)h, 0 6 s 6 1,

x−(s) = x(s) − (1− s)h, 0 6 s 6 1.

We obtain from u ≺ L+ c(0) that

u(x(1)) − u(x+ h) 6
∫1
0
L
(
x(s) + (1− s)h, ẋ(s) − h

)
ds+ c(0)

u(x(−1)) − u(x− h) 6
∫1
0
L
(
x(s) − (1− s)h, ẋ(s) + h

)
ds+ c(0).

Combining these equations and Taylor expansion we obtain

2u(x) − u(x+ h) − u(x− h) > −C|h|2

where C depends only on ‖D2L‖L∞(Tn×B(0,R)) and R = ‖ẋ‖L∞ is bounded (Lemma 3.18). �
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5. The Peierls Barrier

5.1. Outline. Our standing assumptions through out this chapter will be the following.
L ∈ Ck(Tn ×Rn) for some k > 2,

lim|v|→∞ (infTn
L(x,v)
|v|

)
= +∞,

D2vL(x, v) � 0 for all (x, v) ∈ Tn ×Rn.

(L)

As usual, the natural corresponding assumptions on H follows.
H ∈ Ck(Tn ×Rn) for some k > 2,

lim|p|→∞ (infTn
L(x,p)
|p|

)
= +∞,

D2pH(x,p) � 0 for all (x,p) ∈ Tn ×Rn.

(H)

Outline.
(1) Introduction to this notion (introduced by Mather around 1993) and its basic prop-

erties. Heuristically it is the cost of going from x to y in an infinite amount of time.

5.2. Introduction. Following the minimal action for a given time ht(x,y) as in (3.2), it is
natural to ask what is the cost going from x to y in an infinite amount of time?

Definition 15 (The Peierls barrier). We define h : Tn ×Tn → R is defined as

h(x,y) = lim inf
t→∞

(
ht(x,y) + c(0)t

)
.

Some of the properties of the map (x,y) 7→ h(x,y) can be derived from properties of the
minimal action ht(x,y) for t > 0.

Lemma 5.1 (Properties of h(x,y)).
1. h(x,y) is uniformly bounded and (x,y) 7→ h(x,y) is uniformly Lipschitz.
2. If u ≺ L+ c(0) then u(y) − u(x) 6 h(x,y), consequently h(x, x) > 0.
3. (Triangle inequality) h(x,y) + h(y, z) > h(x, z), consequently h(x,y) + h(y, x) > 0.

Proof.
1. The boundedness of h follows from Proposition 3.17. For t > 1 we have ht(·, ·) is

Lipschitz with constant at most C1, hence as t → ∞ we have h is Lipschitz with
constant at most C1.

2. If u ≺ L+ c(0) then

u(y) − u(x) 6 inf
{∫ t

0
L(γ(s), γ̇(s))ds+ c(0)t : γ(0) = x,γ(t) = y

}
.

Let t → ∞ we deduce that u(y) − u(x) 6 h(x,y). Pick u ∈ S− then the result
follows.

3. It follows from the fact that ht(x,y) = infz∈Tn (ht(x, z) + ht(z,y)). The claim follows
from h(x, x) > 0 and h(x,y) + h(y, x) > h(x, x).

�
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5.3. Connection between the projected Mather set and the Peierls barrier. We now
study deeper properties of the Peierls barrier.

Theorem 5.2. If x ∈M0 then h(x, x) = 0.

Proof.

• Take x0 ∈ M0, then there is v ∈ Rn such that (x, v) ∈ M̃0. Pick µ to be a Mather
measure such that (x, v) ∈ supp(µ).
• By Poincaré’s recurrence theorem, the current points of φLt contained in supp(µ)

form a dense set in supp(µ).
• By the continuity of h, we can assume (x, v) is a recurrent point of φLt , then for any
r > 0 there exists tk →∞ such that φLtk(x, v) ∈ B((x, v), r) for all k ∈N.

Fix u ∈ S−, we have

u
(
π ◦ΦLt (x, v)

)
− u(x) =

∫ t
0
L
(
φLs (x, v)

)
ds+ c(0)t.

As (x, v) a recurrent point, there exists a sequence tk → ∞ such that π ◦ΦLtk(x, v) → x as
tk →∞. Let tk →∞ we deduce that Therefore

lim
tk→∞

[∫ t
0
L
(
φLs (x, v)

)
ds+ c(0)t

]
= 0.

Thus the cost of connecting xk = π ◦φLtk(x, v) to x vanishes as tk →∞, hence h(x, x) = 0 if
x ∈M0. �

Theorem 5.3 (Stability and approximation).
1. For x,y ∈ Tn, there exists sequence of minimizing extremal curves γk : [0, tk]→ Tn with
tk →∞ such that γk(0) = x,γk(tk) = y and

h(x,y) = lim
tk→∞

(∫ tk
0
L(γk(s), γ̇(s))ds+ c(0)tk

)
.

2. If γk : [0, tk] → Tn is a sequence of continuous piece-wise C1 curves with tk → ∞ such
that γk(0)→ x,γk(tk)→ y then

h(x,y) 6 lim inf
k→∞

(∫ tk
0
L(γk(s), γ̇(s))ds+ c(0)tk

)
.

Proof. The proof follows from the definition h(x,y) = limt→∞ (ht(x,y) + c(0)t
)
.

�

5.4. Weak attractor.

Lemma 5.4. Let V be an open neighborhood of M̃0 in Tn ×Rn. Then, there exists T = T(V)

such that if γ : [0, t]→ Tn is a minimizing curve with t > T then there exists s ∈ [0, t] such that(
γ(s), γ̇(s)

)
∈ V .

Proof. Assume the contrary, then we can find tk → ∞ and γk : [0, tk] → Tn minimizing
curves such that {(

γk(s), γ̇k(s)
)
: 0 6 s 6 tk

}
∩ V = ∅.
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We can always assume tk > 1. From Lemma 3.18 there exists a compact set K such that{(
γk(s), γ̇k(s)

)
: 0 6 s 6 tk

}
⊂ Tn ×K.

We now construct a Mather measure from {γk} to get a contradiction. Let µk ∈ P(Tn×Rn)

be such that ∫
Tn×Rn

ψ(x, v)dµk(x, v) =
1

tk

∫ tk
0
ψ(γk(s), γ̇k(s))ds

for all bounded continuous ψ. We see that supp(µk) ⊂ Tn × K, thus we can find a weak
convergent (in measure) subsequence µk ⇀ µ. Clearly supp(µ) ∈ Tn × K and similar to
Theorem 4.1 we find that µ is invariant under φLt (·, ·). We have∫

Tn×Rn
L(x, v)dµk(x, v) =

1

tk

∫ tk
0
L(γk(s), γ̇k(s))ds =

1

tk
htk
(
γk(0),γk(tk)

)
Using the boundedness of (x, t) 7→ ht(x,y) uniformly for t > 1 in Proposition 3.17, as
tk →∞ we deduce that ∫

Tn×Rn
L(x, v)dµ(x, v) = −c(0).

Thus µ is a Mather measure and suppµ∩ V = which is a contradiction. �

5.5. The Aubry set.

Definition 16 (The Aubry set A0). The Aubry set A0 is defined by

A0 = {x ∈ Tn : h(x, x) = 0}.

Remark 35. It is clear that A0 6= ∅ as ∅ 6= M0 ⊂ A0 ⊂ Tn.

We have the following properties (characterization) of the Aubry set A0.

Proposition 5.5. The followings are equivalent.
(i) x ∈ A0, i.e., h(x, x) = 0.

(ii) There exists a sequence {γk} of continuous, piece-wise C1 curves γk : [0, tk] → Tn with
γk(0) = γk(tk) = x and tk →∞ such that

lim
tk→∞

(∫ tk
0
L
(
γk(s), γ̇k(s)

)
+ c(0)tk

)
= 0.

(iii) There exists a sequence {γk} of minimizing extremal curves γk : [0, tk]→ Tn with γk(0) =
γk(tk) = x and tk →∞ such that

lim
tk→∞

(∫ tk
0
L
(
γk(s), γ̇k(s)

)
+ c(0)tk

)
= 0.
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6. Viscosity solutions

6.1. Outline. As usual, our standing assumptions on H are
H ∈ Ck(Tn ×Rn) for some k > 2,

lim|p|→∞ (infTn
L(x,p)
|p|

)
= +∞,

D2pH(x,p) � 0 for all (x,p) ∈ Tn ×Rn.

(H)

6.2. Vanishing viscosity process. To find a solution for{
ut(x, t) +H(Du(x, t)) = 0 (x, t) ∈ Rn × (0, T),

u(x, 0) = g(x) (x, t) ∈ Rn × {0},

we look at the unique solution uε of the second-order problem with small diffusion{
uεt(x, t) +H(Duε(x, t)) = ε∆uε(x, t) (x, t) ∈ Rn × (0, T),

u(x, 0) = g(x) (x, t) ∈ Rn × {0}

and passing ε → 0, using maximum principle to select a weak solution. The idea was
originally introduced by Fleming, Kruzkov in deriving Euler equation from Navier–Stoke
equation, and was done for Hamilton–Jacobi equation by Crandall–Lions and Evans
(1960–1980). The main idea is using maximum principle to kick the derivative to test
function, resembling L∞-integration by parts.

6.3. Large time behavior of solutions. Let us consider the equation{
ut(x, t) +H(x,Du(x, t)) = 0 (x, t) ∈ Rn × (0, T),

u(x, 0) = g(x) (x, t) ∈ Rn × {0},
(6.1)

The optimal control formula reads

u(x, t) = inf
{∫ t

0
L(γ(s), γ̇(s))ds+ g(γ(0)) : γ ∈ AC([0, t]; Tn),γ(t) = x

}
.

From the existence of a minimizer, there exists z ∈ Tn and a Ck curve ξ : [0, t]→ Tn with
ξ(0) = z, ξ(t) = x such that u(x, t) =

∫t
0 L(ξ(s), ξ̇(s))ds+ g(z). The fact that ξ ∈ Ck follows

from the Euler-Lagrange equation which ξ solves
d

ds

(
DvL(ξ(s), ξ̇(s))

)
= DxL(ξ(s), ξ̇(s)), 0 6 s 6 t.

We recall that the ergodic problem

H(x,Dv(x)) = c(0) in Tn (6.2)

has a lot of solutions and if v is such a solution to (6.2) then u(x, t) = v(x) − c(0)t is a
solution to (6.1) without the initial condition. We thus hope for u(x, t) ≈ v(x) − c(0)t as t
large for some v solves (6.2).

Theorem 6.1. Let u be a viscosity solution to (6.1), then as t→∞ we have

lim
t→∞

(
u(x, t) + c(0)t

)
= v(x) in Tn

where v is a solution to the ergodic problem (6.2).
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Heuristic proof following Fathi. The key ingredients are the followings.
1. There exists a minimizing curve ξ ∈ Ck with ξ(t) = x such that

u(x, t) =
∫ t
0
L(ξ(s), ξ̇(s)) + g(ξ(0))

and we have the conservation of energy along ξ(·) as s 7→ H(ξ(s), ξ̇(s)) is a constant
for all s ∈ (0, t).

2. The Mather set M is a weak attractor such that M ⊂ {x ∈ Tn : H(x,Du(x)) = c(0)}.
For ε > 0, let Wε =

{
x ∈ Tn : H(x,Du(x)) ∈ (c(0) − ε, c(0) + ε)

}
is an open set in Tn,

then M ⊂ Wε. There exists Tε such that if t > Tε then there exists s̄ ∈ [0, Tε] such
that

H(ξ(s̄),Du(ξ(s̄))) ∈ (c(0) − ε, c(0) + ε)

which implies that

H(ξ(s),Du(ξ(s))) ∈ (c(0) − ε, c(0) + ε)

for all s by conservation of energy, this holds for all s instead of s̄ only, which
is remarkable. Therefore using the equation we obtain ut ≈ −c(0)± ε when t is
large.

3. Concerning the ergodic problem (6.2), any weak KAM solution of negative type
v ∈ S− is a solution to (6.2). For such a weak KAM solution, given any x ∈ Tn there
exists a calibrated curve γ : (−∞, 0] → Tn with γ(0) = x so that if −∞ < s < t 6 0
then

v(γ(t)) − v(γ(s)) =

∫ t
s
L(γ(s), γ̇(s))ds+ c(0)(t− s).

In other words, v ≺ L+ c(0) with the exact equality. Using convexity it preserves
the ≺ property onto any limiting solution u∞ we may get. This is vague but we
will see in the proof.

�

Remark 36. This is a very nice framework but it does not cover every important direction
in large time behavior of (6.1) (e.g., H is singular or the problem is set in a non-compact
domains: forced mean curvature flow, coagulation-fragmentation, . . . ).

To make the proof of Theorem 6.1 clearer. We state the following Lemma on the weak
attractor of M and how it relates to solution u(x, t) of (6.1) independently.

Lemma 6.2. For ε > 0, there exists Tε > 0 such that for each t > Tε, if Du(x, t) exists then
H(x,Du(x, t)) ∈

(
c(0) − ε, c(0) + ε

)
.

Proof. It is a simple consequence of the weak attractor property of the Mather set. As we
assume Du(x, t) exists, we can find a minimizer (run the Lagrangian flow with the initial
data known) curve γ : [0, t]→ Tn with γ ∈ Ck, γ(t) = x such that

u(x, t) =
∫ t
0
L(γ(s), γ̇(s))ds+ g(γ(0)) and Du(x, t) = DvL(γ(t), γ̇(t)).

We note that the second condition is simply γ̇(t) = DpH(x,Du(x, t)).
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Recall that L : (x, v) 7→ (x,p) maps L(x, v) = (x,DvL(x, v)) is a local Ck−1 diffeomorphism
(Definition 2) with its inverse H = L−1(x,p) = (x,DpH(x,p)). Let us define

Wε =
{
(x, v) ∈ Tn ×Rn : H ◦L(x, v) ∈

(
c(0) − ε, c(0) + ε

)}
then it is an open neighborhood of M̃0, thus by the local attractor property there exists
Tε > 0 such that for any t > Tε there exists s̄ ∈ [0, t] such that(

γ(s̄), γ̇(s̄)
)
∈Wε =⇒ L

(
γ(s̄), γ̇(s̄)

)
∈
(
c(0) − ε, c(0) + ε

)
.

By conservation of energy we obtain

H ◦L
(
γ(s), γ̇(s)

)
∈
(
c(0) − ε, c(0) + ε

)
.

for all s ∈ [0, t], which implies that H(x,Du(x, t) ∈ (c(0) − ε, c(0) + ε). �

Proof of Theorem 6.1. Without loss of generality, let us assume c(0) = 0 by adding a con-
stant to H. Let v ∈ C(Tn) solves (6.2) then ṽ(x, t) = v(x) − c(0)t = v(x) solves (6.1). Let
C be large enough so that v(x) − C 6 g(x) 6 v(x) + C for x ∈ Tn. Run the Hamiltonian
flows, i.e., by comparison principle

v(x) −C 6 u(x, t) 6 v(x) +C for all (x, t) ∈ Tn × (0,∞).

We also have a priori estimate ‖ut‖L∞(Tn) + ‖Du‖L∞(Tn) 6 C. In the space C(Tn), the
family {u(·, t) : t > 0} is uniformly equi-continuous (following from ‖ut‖L∞(Tn) 6 C), thus
by Arzelà–Ascoli Theorem we can find a subsequence tk →∞ and a function u∞ ∈ C(Tn)

such that
Ttkg(x) = u(x, tk)→ u∞(x) uniformly as tk →∞.

Here Ttg(x) = u(x, t) is the solution map of (6.1). We now show u∞ solves (6.2).
1. u∞ inherits the subsolution property beautifully. Let ε > 0, from Lemma 6.2 we

find Tε > 0 such that for tk > Tε

H(x,Du(x, tk)) 6 c(0) + ε = ε for a.e. x ∈ Tn.

By convexity (and Jensen’s result),

H(x,Du(x, tk)) 6 c(0) + ε = ε for x ∈ Tn in the viscosity sense.

Let tk → ∞ and use stability of viscosity solution we obtain that, in the viscosity
sense H(x,Du∞(x)) 6 ε in Tn and thus u∞ is a subsolution to (6.2) by sending
ε→ 0.

2. The supersolution property is trickier. Using the fact that u∞(·) is a subsolution
to (6.2), we have Ttu∞(·) is a subsolution to{

wt(x, t) +H(x,Dw(x, t)) = 0 (x, t) ∈ Rn × (0, T),
w(x, 0) = u∞(x) (x, t) ∈ Rn × {0},

(6.3)

while ũ(x, t) = u∞(x) is a viscosity solution, hence by comparison principle

Ttu∞(·) 6 u∞(·) =⇒ Ts+tu∞(·) 6 Tsu∞(·)
and thus s 7→ Tsu∞(·) is non-increasing for s > 0. We claim that

Ttu∞(·) ≡ u∞(·) for all t > 0. (6.4)
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Assume that sk = tk+1 − tk → ∞ we show Tsku∞(·) → u∞(·) uniformly as sk → ∞.
The ingredients are Ttkg(·)→ u∞(·) and the contraction property

‖Ttg1(·) − Ttg2(·)‖L∞(Tn) 6 ‖g1 − g2‖L∞(Tn).

We have Ttk+1
= Tsk ◦ Ttk , thus

‖Tsku∞ − u∞‖L∞ 6 ‖Tsku∞ − Ttk+1
g‖L∞︸ ︷︷ ︸

‖u∞−Ttkg‖L∞
+‖Ttk+1

g− u∞‖L∞ → 0

as tk → ∞. Together with the fact that s 7→ Tsu∞ is non-decreasing, we have
Tsu∞(·) → u∞(·) uniformly as s → ∞ and further that (6.4) holds, hence u∞ is a
solution to the ergodic problem (6.2).

Finally, write t = s+ tk we have

‖Ttg− u∞(x)‖L∞ 6 ‖Ts+tkg− Tsu∞(x)‖L∞︸ ︷︷ ︸
‖Ttkg−u∞‖L∞

+‖Tsu∞ − u∞‖L∞ → 0

as t→∞. �

Remark 37. Some open questions:
1. Can we quantify Tε in the attractor property?
2. Rate of convergence of u(x, t)→ u∞(x) − c(0)t?

Some other proofs are available ([8, 19], . . . ).
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