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1. LEGENDRE’S TRANSFORM

1.1. Definition. Let H: R" — IR be a given convex function, we want to study properties
of H and its Legendre’s transform deeply. Generally speaking, convexity is one-sided
linearity. H is the supremum of all affince functions whose graphs stay below the graph
of H. Basically, H is convex there is an index set A so that

H(p):sup{va-erao(:cxeA}

where (valaes € R™ {anlaes € R. Assume that H is convex and superlinear (H grows
faster than linear speed), that is

H(p)

Ipl—soo [Pl

Definition 1 (Legendre’s transform). L : R — R is

L(v) = H*(v) = sup (p -v—H(p)).
pelR™

Example 1. If H(p) = J|p|? for p € R™ then L(v) = 3 for v e R™

1.2. Geometric meaning of Legendre’s transform. Consider all hyper-plane that touches
the graph of H from below of the form p - v+ c. Basically when varying v, this give lines
of slope v, and thus for p - v+ c to touch H from below, we can see that at the touching
point H(p) =p -v+c, hence

L(v) :psglgl <p -v—H(p)) = —c.

Lemma 1.1. L is finite, convex, and superlinear.

If H is not superlinear then L is still defined, but could be infinite at some places. An
example is H(p) = |p| for p € R™ that yields L(v) = 0 for [v| < and L(v) = 400 otherwise.

Lemma 1.2. If H is convex then L* = H, i.e., H** = H.
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We refer the proofs of Lemmas 1.1 and 1.2 to [5]. The key ingredient is the existence of
the so-called subgradient' 9~ f(x) # () at every point if f is a convex function. An important
inequality arises from the proof of Lemma 1.2 is

Hp)+Lv)=p-v for all p,v € R™
It is natural to ask when do we have equality, in short,
H(p)+Lv)=p-v — peEo L(v) — v € 0 H(p).
In case H, L are C', they become p = DL(v) iff v =DH(p).

Question 1. Show that if H is differentiable at p then one has 9H(p) = {DH(p)}. Conversely, if
H is convex and 0H(p) = {&} then H is differentiable at p with VH(p) = &.

Theorem 1.3. Assume that H is convex and differentiable. Then, H € C'.
Proof. Assume py — po, we show DH(py) — & = DH(py). Since [px| < C for all k we have
H(px +h) > H(px) + DH(px)-h for all |h| < 1.

Thus [DH(py)| < 2maxpyi<c41 IHP)I, hence up to subsequences DH(py) — &y for some
& € R™. By convexity

H(p) = H(pw) +DH(px) - (p —px)

and thus H(p) > H(po) + & - (p —po), hence &y € D H(py) and thus &y = DH(py) since H
is differetiable at py. The uniqueness of £y = DH(py) enables us to have convergence of
the whole sequence DH(py) — DH(py). O

The proof also implies that:

Lemma 1.4. If H is convex then there hold

(i) (Boundedness of subgradient) OH(B(0,R)) C B(0, Cg).
(ii) (Stability) If px — p and vy € OH(py) such that vi — v then v € OH(p).

About the existence of subgradient, there are some methods commonly used.

(1) Do convolution H® = H xn, then H® is convex and smooth, thus at p one has
DH®(p) = v, and we get a subsequential limit ve; = v € OH(p).

(2) Proof by contradiction. H convex implies H is locally Lipschitz, thus by Radamacher’s
theorem H is differentiable a.e.. Assume H is differentiable at py and pyx — p, then
(by compactness) if DH(pyx) — v and v ¢ 0H(p) we can derive a contradiction.

(3) Hahn-Banach theorem (supporting hyper-plane in finite dimensional spaces).

Question 2. Show that if H is convex then 0H = D™H is nonempty.

Question 3. If H is not convex, then what does the information H** recover?

"For convex functions, 9~ f and 9f both mean the same thing as subgradients, even though the former
one can be defined for general nonconvex functions.
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1.3. Strictly convex Hamiltonians.

Theorem 1.5. Assume that H is convex and super-linear, then the following are equivalent:
(i) H is strictly convex, that is for s € (0,1) then
H(sp1 + (1 —s)p2) < sH(p1) + (1 —s)H(p2). (1.1)
(if) OH(p1) NdH(p2) = D if p1 # p2.
(ili) L= H* € C.
Proof. For (i) implies (ii), if & € 9H(py) N OH(p2) for some p; # p; then by definition of
subgradient we have
Hispr + (1 —s)p2) 2 Hip1) +&- (p2—p1)(1 —s),
H(spi + (1 —=s)p2) =2 H(p2) + & (p1 —p2Js,
for s € (0,1). Multiplying the first equation with s, the second equation with (1 —s) and
adding them we obtain a contradiction with (i).
For (ii) implies (iii), from Question 1 it suffices to show that 0L(v) is a singleton at any
v € R™. Itis obvious since py,p; € 0L(v) implies v € OH(p;) NOH(p;2) = 0 is a contradiction.
For (iii) implies (i), if H is not strictly convex, i.e.,
H(sop1 + (1 —s0)p2) = soH(p1) + (1 —so)H(p2).
for sp € (0,1) and p; # pa, then for all s € (0,1) there holds

H(spy + (1 —s)p2) = sH(p1) + (1 —s)H(p2).

Take v € 0H (ps) where ps = spy + (1 —s)p2, then for p € R™ we have H(p) — H (ps) >
v (p—ps), thus

> H
> H

H(p) —H(p1) = Hips) —H(p1) +v- (p—ps)
= (1—s)(H(p2) —H(p1)) +v- (p —ps)
2 (1=s)v-(p2—p1)+v-(p—ps)
=v-(p—p1)
Thus v € 0H(p1) and similarly v € 0H(p2) as well, which is a contradiction as it implies
p1,p2 € OL(v) ={VL(v)} O
Theorem 1.6. Assume H € CK(R™) with k > 2, H is convex, super-linear and is locally uni-
formly convex, i.e., D*H(p) = 0 (positive definite) every where, then
o L c CK(RM.
e DH:RR" — R™ is a C*! diffeormophism.
e DL(v) = (DH)~'(v), D?L(v) = [DZH(DL(v))] .
e L(v)=v-DL(v) —H(DL(v)).
Proof. As H is locally uniformly convex, it is strictly convex and thus L € C' and we have
for all v € R™ then
p =DL(v) = v = DH(p).
Thus (DL)~' : R® — R" is well-defined and (DL)~'" = DH, which is of class C*~'. Since

D?H > 0 everywhere in R™, the inverse function theorem says that DH : R* — R™ is a
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local C*! diffeomorphism R"™ — R™, thus DL is also a local C*~! diffeomorphism and
thus L is of class C*. By definition DH(DL(v)) = v for all v € R", thus

D?H(DL(v)) - D’L(v) = I,

for all v e R™ and therefore D?L(v) = [DZH(DL(V))r]. O

1.4. Hamiltonians that depend on positions. We consider Hamiltonians that depend
also on position, generally H = H(x, p) for (x,p) € R™ x R™. Assume that

(H) H(x,p) € C(R™ x R™),p — H(x,p) is convex and
lim (inf H(x,p)> =400

lpl—oo \xeR™  |p|

We define as usual the Lagrangian

L(x,v) = H*(x,v) = sup (p-v—HI(x,p)), (x,v) € R™ x R™. (1.2)
peR™

Theorem 1.7. Assume (H), then L is finite, convex and superlinear in v and L* = H** = H. The
supremum in (1.2) is achieved and if [v| < R then there exists Cy such that

L(x,v) = sup (p-v—HI(x,p)).
[pI<Cr

Also, L € C(R™ x IR™) and if H is strictly convex in p then D, L(x,v) exists and (x,v) — D,L(x,V)
is continuous.

Proof. The only new thing to prove here is the continuity of L. Assume (xy, vk) — (xo, Vo)
in R™ x R™, as [vi| < C, we can find p, € R™ with [py| < C such that

L(xk, Vi) = px - vk — H(xx, Px), k € IN.

Denote w(k) = [H(xo, px) — H(xx, px)| + Clvk — vo| — 0 as k — oo (here we use the fact that
pk is bounded and thus a local uniform modulus of continuity exists) then

L(xk, Vi) = Pk - vk — H(xk, Px) < P - vo — H(xo, pr) + w(k) < Lxp, vo) + w(k).

Therefore

lim sup L(Xk, Vk) < L(Xo,\lo).
k—o00

Take any p € R™ then by definition
Lixk,vid 2 p-we—Hx,p),  keN,

which gives us that, for all p € R™ then

liminf L(xy, vi) = p - vo — H(xo, ) = lim inf L(xy, vi) = L(xo, vo).
k—o00 k—o00
Thus the proof is complete. O



Theorem 1.8. Assume (H), then if H € C*(R™ x R") for k > 2 and H is locally uniformly
convex in p, i.e., D*H(x,p) > 0 forall (x,p) € R* x R™ Then L € C*(R™ x R™) and there exists
a unique p(x,v) such that

p(x,v) = DyL(x,V)
DyL(x,v) = —=DyxH(x, p(x,Vv))

1
D3L(x,v) = [DE,H(x Pl )|
Also, p(x,v) = DyL(x,v) implies v = DpyH(x, p(x, V).
Proof. We already known that for each fixed x € R™ then v — L(x,v) is of class C*(R™).

By assumption, DyH : (x,p) — DpH(x,p) is a C*1(R™ x R") diffeomorphism (by inverse
function theorem with locally uniform convexity). The relations

p = D,L(x,v) — v =D,H(x,p)

defines a map £ : (x,v) — (x,p) = (x, D,L(x,v)) with its inverse H : (x,p) — (x, DpH(x,p)).
Now since H is a C*¥1(R™ x R") diffeomorphism, £ is also is a C*1(R" x R") diffeo-
morphism, i.e.,

(x,v) = DyL(x,v) € CKT(IR™ x R™).
We need to show that (x,v) — DyL(x,v) is CKT(R™ x R"). Let us define?

p(x,v) = D,L(x,v) € CKT(R™ x R").

From the identity

L(x,v) =p(x,v)-v—H(x,p(x,Vv))
we deduce that x — L(x,v) is differentiable in x for each v and thus, by differentiating
with respect to x we have

DyL(x,v) = —=DyH(x, p(x,v)) + (v -Dyxp(x,v) = DpH(x, p(x,v)) - Dxp(x,v)) = —DyH(x, p(x,V))
since v = DpH(x, p(x,V)). O
Definition 2. Define
H:R"x R" — R™ x R"
(x,p) = (x,v) = (x, DpH(x, p))
and its dual
L:R"xR" — R" x R"
(x,v) = (x,p) = (x, DyL(x,Vv)).
Under the assumption of Theorem 1.8, 3, L are both local C¥~" diffeomorphisms.

Remark 1. Sometimes we assume more that H is bounded in R™ x B(0, R) for each R > 0
(so is L) to get the boundedness of |p(x,v)| given |v| < C. If p(x,v) € 9,L(x,v) then
L(x,v+h) > L(x,v) +p(x,v) - h, thus

Ip(x, V)| = r‘}r&%p(x,\)) -h < [L(x, v)[+ [L(x, v+ h]|.

2This is significant as it says x — p(x,v) is continuously differentiable.
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2. CALCULUS OF VARIATIONS

Outline.

e We state the minimization for action functional problem and show that generally
minimizers satisfy Euler-Lagrange equation with less and less regularity assump-
tion.

C? — C' — piece-wise C' — AC.

e Existence and regularity of minimizers. We show that there exists an absolutely
continuous minimizer and then show that the minimizer is indeed smooth (pro-
vided that the Lagrangian is smooth).

The main tool is the mechanism that allows us to go back and forth between Hamiltonian
viewpoint and Lagrangian viewpoint.

2.1. Action functional. For a continuous, piece-wise C'! curve v : [a,b] — R™, the action
functional of v for L is defined by

We note that y € AC([a, b];R™), the space of absolutely continuous curves, is enough to
define the action functional here (¥ € L'([a, b)) is enough).

2.2. Minimizers and the Euler-Lagrange equation. There are many different notions of
minimizers, we start with the following notion.
Definition 3. Fix y,z € R™. Denote the admissible set as

A= {y e C([a,b; RY) piece-wise C',y(a) =y, v(b) = z}.

We say that v € A is a minimizer of class A if I[y] = ianL In].
ne

We assume through out the chapter that

(L) L € C*(R™ x R™) for k > 2, L is super-linear in v uniformly in x and D2 L(x,v) = 0
for all (x,v) € R™ x R™.

Theorem 2.1. Ify € C?([a, bl;R") is minimizer then vy satisfies the Euler-Lagrange equation

& (DULY($), ¥(5)) = DuLiy(s), ¥(s),  a<s<b.

Proof. Letn € C*([a, b]; R™) with n(a) =n(b) =0. Foreach t € R, y+ ™ € A. Let
i(t) = Iy + ]
then 1: R™ — R™ and thus i’(0) = 0. We recall that
b
i(r) = | L(v(s) 4 m(s), 30 +-7i(s) ds.
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We deduce that

b
07) = | (DuL(v(s) + mls), 7(s) + Ti(5)) -n(s) + DL (y(s) + m(s), ¥(s) + i(s)) i) ) .

a

Setting T = 0 we have

b
(0 = | (DuL(r(s),7(9) n(s) + DL(Y(s), ¥(s)) 1(s)) e

a

As y(s) is C!, by integration by parts we have

b
10) - | (Dxuv(s),ws)) - %Dvw(s),v(s)))n(s) ds =0

for all n € C*([a, b]; R™) with n(a) =n(b) = 0. This gives us the conclusion. O

Remark 2. If we only assume that y € C'([a, b];R™) then we cannot yet write down the
Euler-Lagrange equation. What we have is

t

Jb (D”L(V(t)'i’(t)) - L DxL(Y(S),Y(S))ds) M(t)dt =0

for all n € C*([a, b]; R™) with n(a) =n(b) = 0. In order words we only have

t
DyL(v(t), (1)) =a+J DyL(y(s), ¥(s))ds (2.1)

a

for some & € R™. This says that t — D,L(y(t),v(t)) is C! provided that s — (y(s),v(s)) is
C° only.

Theorem 2.2. If y € C'([a,bl;R™) is minimizer then v € C?([a,bl;R™) and in fact y €
C*([a, b; R™).

Proof. Fix ty € [a,b] and let (xo,vo) = (v(to), ¥(to)). Recall that (x,v) — (x,D,L(x,v)) is a
local C*~! diffeomorphism. Let 3 be the local inverse that maps (x,p) — (x, DpH(x,p))
which is also a C*~! diffeomorphism, we have

{ﬂf (xo, DvL(x0,v0)) = (X0, Vo),
H(v(t), DyLlv(t),v(1)) = (v(t),v(t)),
for t ~ ty. As a minimizer, we still have vy satisfies (2.1), thus D, L (y(-), ¥(-)) € C'. Together
with H is C*! and
FH(v(t), DyL{v(t),v(1)) = (v(t), (1)
we deduce that t +— (y(t),¥(t)) is C', therefore y € C? and by induction y € C*. O

Remark 3 (Hamiltonian and Lagrangian viewpoints). If one thinks of x(t) = y(t) as the
position of a particle and v(t) = y(t) as the velocity then the momentum is defined as

p(t) =DyL{y(t),v(t)) = w(t) = DpH(x(t),p(t)).
8



We call (y(t),v(t)) the Lagrangian coordinates, and the associated Hamiltonian system is
defined by (x(t),p(t)) with

{»‘c(t) = Y(t) = DyH (x(t), p(t)),
p(t) = DyL(y(t), V(1) = —DyH(x(t), p(t)).

We remark that if L is not nice enough then minimizers can have bad regularity or min-
imizers may not satisfy the Euler-Lagrange equation. To further relax the regularity of
minimizers, we will need the following lemma.

Lemma 2.3. If vy : [a,b] — R™ is a continuous, piece-wise C' minimizer then Yle,a) 18 also a
minimizer to

d
inf | Ln(s)(s) as

where A’ is the set of all 1 continuous and piece-wise C' from [c,d] to R™ with n(c) = y(c) and
n(d) =vy(d).

Proof. For each n € A’, we define f] =n on [c,d] and 7j =y on [a, b]\(c, d). It is clear that
fj € A, thus I[fj] > Ily] and therefore

d d
inf J L(n(s),n(s)) ds >J L(y(s),v(s)) ds

neA’ Je c

and thus vy is a minimizer on [c, d]. O
Theorem 2.4. If y € A, i.e., y is a continuous, piece-wise C' minimizer then y € C¥.

Proof. Let a = ap < ... < ap = b such that y € C'([a;, aiq]) fori = 0,...,m—1. By
the previous Lemma vl q,,,] i$ @ minimizer on the subinterval, therefore by Theorem
2.2y € C¥[a;, aipq)) fori=1,2,...,m—1. We only have to show that vy is C! at q; for
i=1,...,m—1, then again Theorem 2.2 concludes. By calculus of variation we have

ait]

Jb (DeL(v,¥) -m+DyLlv,¥) 1) ds = ¥ |7 (oL ir DLy ) ) as =0

a i=0 ai

for all n smooth with n(a) =n(b) = 0. Using integration by parts we have

mol eagy d
> J (wam - EDVL(WQ -nds
i=0 “ %

+> [DuL(v(ap), ¥ia) = DL (v(ay), ¥(a))]n(a) =o0.
i=0

From the Euler-Lagrange equation on [a;, a;i;1] the integral term is zero, thus

m

>~ [DL(v(ar), ¥(a))) = DuL(v(a), ¥(a) | n(ai) = 0.
i=0

Since 1 can be chosen arbitrarily we conclude that

DyL(v(a;), ¥(a;)) = DyL(y(af),v(a]))
9



fori = 0,1,...,m. Now using the identity p-v = H(x,p) + L(x,v) iff p = D,L(x,v) iff
v = DpH(x, p) we obtain the conclusion y(a; ) =v(a;") and hence vy is C! at a;. O

Definition 4 (Extremal curves). A continuous and piece-wise C' curvey : [a,b] — R" is called
extremal if it is a critical point of the action functional
=0 1l (la, b]; R™).
. |, =0 forallneC(la,bLRY)
It is clear that any continuous, piece-wise C' extremal curve is C and satisfies the Euler-Lagrange
equation.

d
— Iy +snl

2.3. Absolutely continuous minimizers. The space of continuous and piece-wise smooth
curves with fixed endpoints is not compact (under a reasonable topology), therefore it is
convenient to relax to a better space in which we have compactness (to construct mini-
mizers).

Definition 5 (Absolutely continuous). v : [a,b] — R™ is absolutely continuous if for each
e > 0 there exists & > 0 such that, if {(ai, bi)}icN s a disjoint family of intervals in (a,b) then

D bi—ail<s = ) h(b)—v(w)l<e

ielN ielN

Theorem 2.5 (Characterization of absolutely continuous curves). vy is absolutely continuous
if and only if all of the following hold
(i) v exists a.e. in (a,b).
(ii) v is Lebesgue integrable on (a,b).
(iii) y(t) —vy(a) = fzy(s) ds for each t € [a, b].

Note that from our super-linearity assumption, there are two scenarios:

e L(x,v) > Cv[P — C for some p > 1, we can get some compactness in LP([a, b]) of y
and the existence is simple (see Appendix of [13] for example).

e One cannot get any LP bound with p > 1 for a minimizing sequence. The best we
can do is y € L'([a, b]), which makes it harder as compactness in L'([a, b]) requires
some additional tightness condition. This theorem says that generally one may
replaces absolutely continuous curves by curves y with y € L.

2.4. Compactness of absolutely continuous curves. The space AC([a,b];IR™) of abso-
lutely continuous curves enjoy the following compactness (tightness) property.

Theorem 2.6. Let {yilxen C AC([a, b];R™). Suppose that {yylxeN is uniformly integrable on
la, b], that is for each ¢ > O, there is & > 0 such that if E C [a, b] is a Borel measurable set with
measure |E| < & then

supj ly(s)lds < e. (2.2)
keIlN JE

If there exists ty € [a,b] such that {yy(to)} is bounded, then there exists a subsequence Yy, and
v € AC([a, b]; R™) such that Y =Y uniformly on [a,b] and Y =Y weakly in L'([a, b)), that

10



is
b b
lim | 4y(5) 0(s) ds = | 1)+ bls) ds
k]—)OO a
forall ¢ € L*([a, b] R™).
This theorem allows us to utilize the nice property of the space AC([a, b];R") (togeher
with the lower semi-continuity of the action functional).

Proof of Theorem 2.6. We split the proof to several steps for clarity.

(1) {vx} is equi-continuous. Since {yk(to)} is bounded, for [t; — t;| <  we have

t2
() —yielt2)] < J i(s)ds| < ¢

tH

for all k € IN. By Arzela<Ascoli theorem, there exists Y =Y uniformly on [a, b].
By abusing of notation, we will write yy;, — v uniformly on [a, b].

(2) v is absolutely continuous. Fix ¢ and pick & > 0 as in the assumption of the
Theorem. Let {(aj, bi)}icn be a sequence of disjoint open intervals with } ;_(b; —
ai) < 9, then the tightness condition gives us that, for all k € IN then

5 hrelo) ~vidaill < Y| Hlo)ds < e

ielN ieN Y4
since ) ;.n(bi —ai) < o. Let k — oo we deduce that y € AC([a, b]; R™).
(3) We show vy — ¥ weakly in L'. To show that

b

b

b
hmJ v'k(s)qa(s)dszj (s)b(s)ds (23)

k—00 Jq a

for ¢ € L*([a,b];R™) we use approximation ¢ € L* by simple functions from
[a, b] to R™. First of all, any open set U in (a, b) can be written as a disjoint union
of countably many open sub-intervals {(aj, bi)}ien. For € > 0 take 6 > 0 as in (2.2)
and choose m such that E = U\ U, (ay, b;) has [E| < 5, we have

J, putsias - if Yils)ds

i=1 74

sup
kelN

< €. (2.4)

Now we have

m b, m

m m bi
> | ilsas = 3 (b < vela) — Y (o0 @) = Y| isles.
i=1

i=1 74 i=1

Taking the limit as k — oo in (2.4) we obtain

m b; m by

ZJ' v(s)ds —e < limian Yi(s)ds < limsupJ' Yi(s)ds < ZJ Y(s)ds + e.

i Jai k=00 Ju koo JU o

Taking m — oo, and since ¢ is arbitrary we deduce
lim J Yi(s)ds = J v(s)ds. (2.5)
k—o0 JUu u
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By approximation, (2.5) holds for all measurable set A C [a, b], and again by approxima-
tion (2.3) follows. O

2.5. Existence of absolutely continuous minimizers. Now we define the new admissible
for fixed y,z € R™ set as

HAqe ={y € AC([a,b]; R") : y(a) =y,v(b) =z}.

The general framework for the existence by direct method goes like this.
(1) Ily] > —C for all y € Aqq4, usually by the super-linearity of L that L(x,v) > 6|v| — Ce.
(2) Taking a minimizing sequence {yx} C Aqq, the compactness result gives (via sub-
sequence) v — Y uniformly on [a,b] and ¥y — ¥ weakly in L'([a, b]; R™).
(3) Show that I[y] < li{n inf I[yy], this is a key point.
—00

Theorem 2.7. Assume L € C'(R™ x R™) such that L(x,v), DyL(x,v) belong to BUC(IR™ x
B(0,R)) for each R > 0, v — L(x,V) is convex and is super linear uniformly in x, i.e.,

lim (inf L(X’V)) = +o00. (2.6)

oo \xeR™  |V]|

Then there exists a minimizer y € Aqc of the action functional.

Proof. Assume inf, .4 Iyl is finite, we can take minimizing sequence {yy}xen. From the
super-linearity of L(x,v), for each 8 > 0 there exist Cy > 0 such that

L(x,v) = 0]v|— Cg for all (x,v) € R™ x R™
As I[yy] < C, we deduce that (the tightness condition follows)

b
. C+C
J als)lds < SCo

5 for all k € IN.

Since yi(a) =y is fixed, {yy} satisfies the tightness (uniform integrability) condition due
to super-linearity, thus there exists y € Agq such that yx — vy uniformly and yx — v
weakly in L'([a, b];IR™). We have left to show that

I[y] < liminfIfy,].
k—o00

To use the uniformly bound on modulus of continuity of L and D,L we need a L* bound
on |yy/, this is unfortunately cannot be obtained on the whole interval [a, b]. Nevertheless,
for m € IN we have

. C
sup|{s € [a,b] : yx(s) = m}| < =. (2.7)
kelN m
As v e L'([a,b];R"), we also have
][ o0

}{s € [a,b]: [y(s)| = m}} < o

Let
Em = {s € labl:(s) <m, yk(s)| < mforallk e N}

12



then we can choose m such that |[a, b]\E«y| < b for any given 6 > 0. On R™ x B(0, m) there
exists a (uniform) modulus of continuity w(x,v) of L, D,L, we have for a.e. s € E,, that
L(vk(s), V(s)) = L(v(s), Vx(s)) — w (|lyk — vllr>)
> L(v(s),v(s)) — w (Jlyk — lltee) + DyL(v(s),¥(s)) - (Vils) —¥(s)).

On E,, we have s — D, L(y(s),v(s)) € L*®([a, b];R"), therefore after taking integration over
s € By and let k — oo we obtain

b
Jqu@m@nm>L L(vk(s), Fi(s))ds — l[a, bI\Em|Co.

a

Therefore
b b
lymﬂLm&mwmm>J1@@#@Mv@&>juwmwm®—xw
— 00 a m a
Let m — oo and & — 0 we obtain the conclusion. O

Assume L € C*(R™ x R") for some k > 2 and D2L(x,v) > O for all (x,v) and the super-
linearity (2.6). We recall that if v is a continuous piece-wise C! minimizer (or an extremal
curve) then vy is C* and v satisfies the Euler-Lagrange equation

L (DLO0,7(0)) =DuL(y(0),7(1),  a<t<b. (2.8)

2.6. Hamiltonian and Lagrangian viewpoints. Before showing similar result for abso-
lutely continuous minimizers, let us give some remarks on Lagrangian and Hamiltonian
viewpoints. For a continuous and piece-wise C' curve v, denote by

{ﬂﬂzwﬂ
p(t) = DuL(v(t), 7(t)) — (1) = DyH(x(t), p(t)).

By Legendre’s transform we have

H(x(t), p(t)) + L{y(t), v(t)) = V(1) - p(t).

If v satisfies the Euler-Lagrange equation then

P(t) = DxL(v(t), ¥(t)) = =DxH(x(t), p(t)).
Thus the Euler-Lagrange equation for y is the key to the Hamiltonian system of 2n
variables
{Mﬂz H(x(t), p(1))

P
p(t) = ~DyH(x(t), p(1)). (29)

)
The Lipchitz property of D,H(x,p) and DyH(x,p) are important here, as they ensure the
existence and uniqueness of such a solution (x(t),p(t)) for all time. For now, let say
(x(t), p(t)) exists on a domain.

Lemma 2.8 (Conservation of energy). On its domain we have t — H(x(t), p(t)) is constant.

Proof. By definition
d . .
= (H(x(t),p(t))) =D H-X+DyH-p =0
since x = D,H and p = —DH. O

13



Remark 4 (Boundedness of the Hamiltonian flow). As long as (x(t),p(t)) exists (in its
domain) then

H(x(t), p(t)) = H(x(0),p(0)) < C.
The super-linearity of H yields that [p(t)] < C. If we assume that D,H, DyH € Lip(IR™ x
B(0,R)) for each R > 0 then this implies that (x(t),p(t)) is defined for all t € R. In
summary, we have
A priori knowledge —  Lipschitz vector field
—  Wellposedness of ODEs.

Definition 6 (Hamiltonian flow and Lagrangian flow). Assume the wellposedness of (x(t), p(t))
forall t € R, we define

o' (x,p) = (x(1),p(t)
where (x(t), p(t)) solves the Hamiltonian system (2.9) with initial condition (x(0),p(0)) = (x, p).
Similarly, assume the wellposedness of solution to the Euler-Lagrange equation for t € R, we
define

br(x,v) = (v(t),¥(t))
where y solves the Euler-Lagrange equation (2.8) with initial condition (y(0),v(0)) = (x,v).
Recall that, £(x,v) = (x,DyL(x,v)) for (x,v) € R™ x R" is a local C*~! diffeomorphism
with its inverse

L7(x,p) = (x, DpH(x,p)), (x,p) € R" x R™

The relation between Hamiltonian flow and Lagrangian flow is

Lodplol™" =l (2.10)

Hamiltonian

{x — D,H(x,p)

Lagrangian

il . .
EDVL(Y,V) = Dy«L(y,v)

p = —DyH(x,p)-

Remark 5 (Integrable system). For ¢ = ¢(x,p) is continuously differentiable, let us intro-
duce the notation

{H, ¢} := D,H-Dyd —DH-D, .

Then the conservation of energy is simply {H, H} = 0. Such an identity is called an invari-
ant, as it says t — ¢(x(t), p(t)) is constant. If there exist ¢4, ..., d_; linearly independent
so that {H, ¢;} = 0 then the Hamiltonian system (2.9) can be reduced to n unknowns
instead of original 2n unknowns. Such a system is called integrable system.

2.7. Regularity of absolutely continuous minimizers. Assume L € C*(R"™ x R") for
some k > 2 and D2L(x,v) = O for all (x,v), L is super-linear (2.6) and further that for
each R > 0 then

L, VL € Lip(R"™ x B(0,R)) N Lip(R™ x B(0, R)).
The ultimate goal is to show that, any minimizer v € AC is also C. The idea of the proof
is again, seemingly ad-hoc.
14



e Pick a point ty € (a,b), lety be the solution to Euler-Lagrange equation with initial
condition (y(to),v) where v is to be chosen such that y(ty +8) = y(to + &) for some
§>0, theny e C~.

v (to + )

=

v(to)

e We show v is a minimizer on [ty, to + 8], thus by the uniqueness of minimizer (we
have strict convexity) y =y € C*.

To prepare for the proof, we recall that Lagrangian flow is denoted by ¢F : (x,v) —
(v(t),¥(t)) where

{% (DyL(v(s),v(s))) = DxL(v(s),v(s)), s>0
(v(0),7(0)) = (x,v).

Lemma 2.9. Let xg € R™ and m: R™ x R™ — R™ be the projection that maps (x,v) — x, there
exists & > 0 such that for a any fixed xo € R™ then

B(xo, Clsl) € mo bt ({xo} x B(0,2C))  forall |s| < 6.

The key point is the same constant C on both sides.

Proof. We take it for granted the fact that, if we start the Lagrangian flow at (x,v) then

dr(x,v) = (v(t,x,v),g—Z(t,x,v)>

gives us y € Ck defined for short time, as it satisfies the Euler-Lagrange equation. We
want to show that

Y(t,%0,V) can be anywhere in B(xo, tC), as v varies in B(0,2C).
This is equivalent to

Y(t/ XO/V) - 'Y(O/ XOIV)
t

can be anywhere in B(0, C) as v varies in B(0,2C).

Let us define
IMi(—¢,e) x R — R"

t — (0 12
Y( /XOIV) ‘Y( /XO/V) :J —Y(St,XO,V) ds.
t o ot

(t,v) —

By the Lipschitz bound |y(y) —v(xo)| < Clxo —y| near xo we see that in fact I' : (—¢, ) x
R™ — B(0, C).

15



By ODE theory, v € C* and thus (t,v) — T'(t,v) is Cl. If t =0 then y(0) = %(O, Xo,V) =V
for v € R", thus

ro,v)=v forallve R" and thus %(O, &) =Idgn for all § € R™.

To use the inverse function theorem, let us define
I": (=, ¢) x B(0,2C) — R™
(t,v) — (t,T(t,v)).
It is clear that " is C' in (—¢, €) x B(0,2C) into R™*! and
1'(0,v) = (0,v) for all v e R"

and

3 1 0
DF(0,v) =
(0,v) <%(o,v) IdIRn>

which is non-degenerate’. We want to show that there exists & > 0 such that

i (=5,8) x B(0,2C) — (=8,8) x B(0, C)

isa C! diffeomorphism. By inverse function theorem* for (0,v) € B(0,C), there exists
oy > 0,71y, Ky > 0 such that

r : (_6\)/ 6\1) X B(V/ TV) — (_6\1/ 5V) X B(vl KV) (2'11)
is a C! diffeomorphism. Denote its (injective) inverse by
1 (=6y,8,) X B(v, k) = (—¢,€) x B(0,2C).

e There exists § > 0 such that ' : (=§,8) x B(0,C) — (—¢,¢) x B(0,C) is injective
on its domain. To see that, assume the contrary that we can find t, — 0 and
Vin # van in B(0, C) such that I'(tn, vin) = I'(tn, v2n). By compactness we can assume
Vin — V1,Von — V2 for vi, vy € B(0, C). In the limit as t,, — 0 we have

v =T(0,v1) =T(0,v2) = v,.

By the previous argument, as v; = v; = v, there exists &, > 0,7, > 0 such that I" is
invertible on (—9,, 8y) x B(v, 8,), which means vy,, = v, for n large, a contradiction.

e As a consequence, from (2.11) we obtain that the image '(—§, 8) x B(0, C) contains
(—5,8) x B(0, C).

In other words, we have shown that B(x,, Cl|t|]) C 7to cb% ({xo} X B(O,ZC)) forall t| <6. O

Theorem 2.10. Let v € Aqc be a minimizer. Then vy € C* and vy satisfies the Euler-Lagrance
equation.

Proof. We divide the proof into several steps.
3A non-degenerate matrix in R*+! x Rn+1.
4If we apply the inverse function theorem for (0,0) € R x R™ then there exists § > 0 and T > 0 such that
:(=8,8) x B(0,C) — (=5,5) x B(0,T)

is a C! diffeomorphism. However, this does not give us the same constant C on both sides.
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(1) Asy € AC([a,b];R"), v € L'([a, b];IR™) and v is differentiable a.e. in [a, b]. We can
pick to € (a,b) such that vy is differentiable at ty and [y(t)o| < Co.
(2) There exists §; > 0 such that
y(t) —v(to)l < 2Colt —to]  fort e (to—081,to+81) C (a,b).
Indeed, by definition of diffrentiability at to, there is a modulus w such that

y(t) —v(to) —V(to) (t —to) = (t — to) w([t — tol)

for t € (to— &1,to + 81), hence [y(t) —y(to)] < 2Colt —to| for t € (tg— 61, to + 61).
(3) (Crucial step) Using the previous lemma we can find v € B(0,2Cy) such that

mo b5, (Y(to),v) =y(t+81)
since y(t+0871) € B(y(tp),2Cpd1).

(4) Let p = D,L(x,v) and ¢ € C*(R") with Do(y(t)) = p. Using method of character-
istics, there exists &, > 0 such that we have existence of a C2(IR™ x (to — 83, tg + 53))
function that solves

ut(x, t) + H(x, Du(x,t)) =0,
u(x, to) = @(x), x € R™

Let us denote 1(s) = mo d)%oﬂ(y(to),v) for s € (—9,5) where § = min{;,5,}. By
regularity of the Lagrangian flow, we have n € Ck(ty, to + 8), thus the goal is to
show that y =n on (ty, to + 5). We do so by showing that

M) — {v(t), t ¢ (to, to+9)

n(t), t e (to, to+9)
is a minimizer of the action functional on [a, b] and the result follows by unique-
ness of minimizer. It is clear that ¥ € AC([a, b];R"). Take any generic absolutely
continuous curve ( : [ty, to + 8] — R™ with ((ty) = v(to) and {(ty +6) = y(ty + 5),
we have

u(C(to+8),to+8) —u(C(to), to) = L L

to+0 d

(¢(s),s)ds

to+6
- J (w((s), 5) + Du(C(s)) - &(s)) ds

to
to+0

- JW (Dutn(s)) - &ls) — H(2ls), Dule(s)) ) s < |

to to

L(cs),&ls)) ds.
On the other hand, by definition of the Lagrangian flow, n satisfies

ii(s) = DpH(n(s), Du(c(s)))

and therefore

to+90 .
wnito +8),to+8) ~unlto) o) = | L(€ls), )
to
Therefore 7 is a minimizer on (to, to + 8), hence y =1 € C* locally. O
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3. THE WEaAKk KAM THEOREM

3.1. Outline. Our standing assumptions through out this chapter will be the following.

L e C¥T" x R") for some k > 2,
thm@mpHﬂ§:+m, (L)

vl

DZL(x,v) = O for all (x,v) € T™ x R™.
As usual, the natural corresponding assumptions on H follows.

He C*T" x R") for some k > 2,

hmwm@mpugﬁz+m, (H)

2 n n
DsH(x,p) = 0 for all (x,p) € T™ x R™.

The connection between PDE and Hamiltonian dynamics can be summarized as follows.

Hamiltonian system

{k = DpH(x,p)

Lagrangian Dynamics

il . .
—DyL(v,v) = DxL(v,V)

dt p = —DxH(x,p).

Stationary
Hamilton-Jacobi PDE

H(x,Du(x)) = ¢ in T™.

The new object H(x, Du(x)) = c in T™ will be our main object of study in this chapter. This
arises in many areas like large time behavior, homogenization, canonical transformation
and ergodic theory.

(1) Invariant under Hamiltonian and Lagrangian flow. Calibrated curves and weak
KAM solutions.

(2) The ergodic constant, the existence of calibrated curves with respect to ergodic
constant and the existence of weak KAM solutions. We use heavily the object
following object

t

mul,y) =inf { [ L0v(s) v1s))ds sy € AC(0, 6T 5v10) =x,v(y) =t}

(3) The Weak KAM theorem, which implies the existence of a (one-sided) calibrated
curve that exists for all time t — —oo (or t — 00).

(4) Properties of the weak KAM solution.

The ultimate goal is to describe solution to the ergodic problem H(x,Du(x)) = ¢ in T™

We will also describe how it can be applied to find the large time behavior of solution
18



u(x, t) to the Cauchy problem

ue(x,t) + H(x, Du(x,t)) =0 (x,t) e R" x (0,T),
u(x,0) =g(x) (x,t) € R™ x{0}.

We note that solution u(x, t) is strongly related to the following Hamiltonian system

{xm — DyH(x(t),p(t)),
pt) = —DxH(x(t), p(t)).

3.2. Invariant under Hamiltonian and Lagrangian flow. The new object H(x, Du(x)) =c
in T" is connected with the Hamiltonian and Lagrangian flows as we have the following
invariant of the graph of Du(-). We will show the invariant under weaker and weaker
regularity assumptions as follows.

C*(T") — CYT™) — Lip(T") — C(T™).

Theorem 3.1 (Invariant under the Hamiltonian flow). Let u € CZ(T™) solves H(x, Du(x)) =
c in ™. For each xo € T™, let py = Du(xo) and consider the Hamiltonian system

{X(t) — DyH(x(t),p(t)),
p(t) = —DyH(x(t), p(t)),

with initial condition (x(0),p(0)) = (xo, po), then the system has solution for all time t € R and
furthermore p(t) = Du(x(t)) for all t € R. In particular, the Hamiltonian flow preserves the
graph of Du, i.e.,

oM cr  forteR
where T'={(x,p) € T" x R": p = Du(x)}.

Proof. Let (x(t), p(t)) be solution to the following ODE
{)’((t) = DpH(x(t), Du(x(t))), >0,

<(0) = x6 (3.1)

and p(t) = Du(x(t)) for t > 0. First of all, [Du(x)| < C in T™ by coercivity and thus
x — DpH(x, Du(x)) for x € T™ is Lipschitz (since u € C?(T™)), therefore solution x(t) exists
for all time t € R and so is p(t). We will show that (x, p) satisfies the Hamiltonian system,
then the result follows from the uniqueness of Hamiltonian ODEs. From p(t) = Du(x(t))
we have
p(t) = D*u(x(t)) - X(t).
From H(x, Du(x)) = ¢ for all t € R we obtain
DyH(x, Du(x)) + D?u(x) - DpH(x, Du(x)) = 0.
Plug in x = x(t), we obtain p(t) = —DxH(x(t), p(t)) and the result follows. O

Remark 6. The idea of canonical transformation in classical mechanics is that, to solve
the Hamiltonian system of 2n variables, if one can find a solution for H(x, Du(x)) = ¢ in
T™ (cell problem) then the system can be reduced to (3.1) which consists of n unknowns
only.
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We remark that the PDE can be defined if u € C'(T™) only. Our next goal is proving
the invariant of T under ¢!' when u € C'(T") only. Recalling the relation between ¢!
and ¢t as in (2.10) is given by

Lodrol " = ¢y
where £ : (x,v) = (x, DyL(x,V)) is a local C*~! diffeomorphism. Define
=L ={(x,DpH(x, Du(x))) : x € T"}

we see that

oy cr — or (M) cT.
In order words, it suffices to show T is invariant under the Lagrangian flow. As we cannot
differentiate Du, we take a different path of going through the Lagrangian characteriza-
tion of C'(T™) solution of H(x, Du(x)) = c in T™ using curves.

Definition 7 (Dominated). We say u is dominated by L+ c in T™ and denote by u < L+ c if
u € C(TM) satisfying

u(y(b)) —u(y(a)) < J L(v(s),v(s))ds +c(b—a)

for every y € AC([a, b]; ™). The set of all w € C(T™) which are dominated by L+ c is denoted
by D¢(T™).

Remark 7. We only require a priori that u € C(T") in the definition of ID¢(T™).

Lemma 3.2. We have the following:
(i) If u € D¢(T™) then so is u+ C for any C € R,
(ii) IDC(T™) is a closed convex subset of C(T™).
(iii) If u € ID(T™) then w is Lipschitz with a Lipschitz constant depending only on L and c.

Proof. (i) and (ii) are obvious. For (iii), assume that u € D(T") we show that u is
Lipschitz. Take y,z € T™ and vy be the straight line connecting them with y(0) =y and

v(1)=z lett=|z—yland v = % then

Y(s) =y +sv, s € [0, Tl.
Clearly v € AC([0, t]; T™), thus since u € ID¢(T™) we obtain

um—mw<LUﬂ%W®+m<QwﬂL

where C = max{L(x,v) : x € T™,|[v| < 1} +c|. Reversing the roles of y,z we obtain the
Lipschitz property of u. O

Theorem 3.3 (Characterization of subsolutions).

w € Lip(T™)
H(x,Du(x)) < cae T™

— u e D(T™).

Remark 8. If u € C'(T™) then the equivalence comes from the fundamental theorem of

calculus easily.
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Proof. Let u € Lip(T™) such that H(x,Du(x)) < c a.e. in T". Let {n¢}e~0 € CX(R™) be
the standard mollifiers and denote u® = 1, *u then thanks to convexity and Jensen’s
inequality

H(x, Duf(x)) < ¢+ w(e) in T™.

By the fundamental theorem of calculus

b
u®(y(b)) —u(v(a)) :J Du‘(y(s) - v(s)ds
b

b
< J (L, )+ Hiy), Du(9)) ds < J L{y, ¥)ds +c(b—a) + w(e)(b—a).
a a

Let ¢ — 0 we obtain that u € ID¢(T™). Conversely, let u € ID¢(T™) then we already known
that u is Lipschitz, thus it is differentiable a.e. in T™. At a point x € T™ where u is
differentiable, let y(s) = x +sv for [v| < 1 and s € [0, ¢], we have

u(x+ ev) —u(x) 1J'EL(x+sv,V)d3+C‘

N

£ € Jo

Let ¢ — 07, since u is differentiabele at x, we obtain
Du(x)-v < L(x,v)+c
This is true for all v e R™, thus H(x, Du(x)) < c. O

Remark 9. This characterization can be relaxed to quasi-convex Hamiltonians (convex
level-sets), as there is a quasi-convex version of Jensen’s inequality, see for example [18].

Theorem 3.4. Let uw € C'(T™) such that H(x,Du(x)) = c in T", then the graph T of Du is
invariant under the Hamiltonian flow ¢

We will present a seemingly ad-hoc proof via the Lagrangian framework. The idea is
choosing an optimal curve in Theorem 3.3 such that the inequality is actually equality,
which renders subsolution into solution. We will need the following lemma, which
illustrates the idea about equality.

Lemma 3.5. Let u € C'(T") solves H(x, Du(x)) = c in T™ Ify : [a,b] — T" is a solution to
¥(s) = DpH(y(s), Du(y(s))), s € (a,b),
then
b
u(y(b)) —uly(a)) = J L(v(s),v(s))ds +c(b—a).

a

It follows that vy is a minimizer of the action over [a,b] with fixed endpoints y(a),y(b), thus
v € C* and it satisfies the Euler-Lagrange equation.

Proof. By the duality Du(y(s)) = D,L(y(s),v(s)) and

Du(y(s)) - v(s) = H(v(s), Duly(s))) + L(v(s), v(s))

for s € (a,b). Integrating we obtain the conclusion. O
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Proof of Theorem 3.4. To show that T is invariant under ¢}, for (xo,po) € T™ x R", let
(x0, Vo) = (x0, DpH(x0,po)) € T'. We consider

{v‘(t) = DpH(y(t), Duly(t), teR,
Y(0) = xo.

As Du € C(T™) only, we have x — F(x) = DpH(x, Du(x)) is in C(T™), thus we have the
existence for all time® (but not uniqueness) of y(t) by Cauchy—Peano existence theorem.
Lemma 3.5 gives us y € C* and v satisfies the Euler-Lagrange equation (necessary con-
dition to apply the Lagrangian flow), which gives us that

dr(xo,vo) = (v(1), (1)) = (v(t), DpH(v(t), Du(y(t)))) c T.
Therefore ¢L(T") c T and thus (") c T. O

Remark 10. The main idea of this ad-hoc proof, that is for any curve v it is clear that
b

J " Duly(s)) - (s)ds < j

a a

(Liv(s),¥(s)) +H(v(s), Dulv(s))) ) ds.
To achieve the equality, i.e., v is optimal, we must choose ¥(s) = DpH(y(s), Du(y(s))).
Corollary 3.6. If u € C'(T™) solves H(x, Du(x)) = c in T" then
I={(x, DpH(x, Du(x))) : x € T}
is invariant under the Lagrangian flow ¢t
3.3. Calibrated curves and Weak KAM solutions.

Definition 8. Given a continuous function w € C(T™) and an open interal 1 C R, we say a
continuous and piece-wise C' curvey : 1 — T™ is (L, u, c)-calibrated if for any a < b in 1 then

b
u(y(b)) —uly(a)) :J L(y(s),v(s))ds +c(b—a).

By definition, if y is calibrated on [a, b] then v is calibrated on [c, d] for any [c, d] C [a, b].
Theorem 3.7. Ifu < L+candy:1— T"is (L, u,c)-calibrated then v € C*(; T™).

Proof. Take [a,b] C I, for any continuous and piece-wise C' curve 1 : [a,b] — T" with
tixed endpoints n(a) = y(a) and n(b) = y(b) we have

u(n(b)) —um(a)) < J L(n(s),n(s))ds +c(b—a).

v(b)

v(a)

5We have the existence on [—8, 8] for small § > 0 and we keep extending it to [-nd, nd].
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In other words, y is a minimizer of L+ ¢ in the class of continuous and piece-wise C'
curves connecting y(a) and y(b), thus y € C* by Theorem 2.4. O

Theorem 3.8 (Characterization of C'-solutions). Let uw € C'(T™) and ¢ € R. The followings
are equivalent.

(i) H(x,Du(x)) =cin T™

(ii) w < L+c and for each x € ™, there exists a (L, u, c)-calibrated curve y : [—¢, e] — T™

with y(0) = x.

(iii) w < L+ c and for each x € T™, there exists a (L, u, c)-calibrated curve y : [—¢,0] — T
with y(0) = x.

(iv) w < L+ c and for each x € T, there exists a (L, u, c)-calibrated curve y : [0,¢] — T™
with y(0) = x.

Proof. For (i) implies (ii), it is clear that u < L+c. As Du(-) € C(T"), we have x —
DpH(x, Du(x)) is continuous, hence by Cauchy-Peano theorem there exists ¢ > 0 such
that the following ODE has a classical solution

v(t) = DpH(y(t), Du(y(t))),  te(—¢¢),
v(0) = x.
In fact one can extend this to y : R — T™ since DyH(x, Du(x)) is bounded, which means

the number ¢ obtained in Cauchy-Peano construction is universal. Because of this choice,
we have

Du(y(t)) - v(t) = H(y(t), Du(y(t))) + L(y(t),v(t))
for t € (—¢, ¢), thus taking integration we obtain that vy is calibrated on its domain. For
(iv) implies (i), let us fix x € T™. For any t € (0, ¢) we have

0
u(y(0)) —uly(=t)) = Jt Ly(s),v(s))ds +ct.
Dividing both sides by t and let t — 0" we deduce that
Du(y(0)) - ¥(0) = L(v(0),¥(0)) +ec.

Therefore
H(y(0), Du(y(0))) = Du(y(0)) - v(0) — L(v(0),v(0)) = c
c.

and thus H(x, Du(x)) = O

Remark 11. The significant thing in this characterization is that (ii), (iii), (iv) do not
require u € C'(T"), thus one can generalized the notion of solution to the following.

Definition 9 (Weak KAM solutions of negative type). A function u € C(T™) is a weak KAM
solution of negative type to H(x, Du(x)) = 0 in T™ if

e u<L+c and

e for each x € T, there exists a (L, u, c)-calibrated curve y : (—oo,0] — T™ with y(0) = x.

Remark 12. The set of all weak KAM solutions of negative type is denoted by §_, and
such a calibrated curve v is also called a backward characteristic (see [20]).
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Question 4. Let H(x,p) = %|P|2 for (x,v) € T x R. Characterize all solutions in ID¢(T).

3.4. Ergodic constant. Recall that we have H(x,p) > —C for all (x,p) € T" x R™ thanks
to super-linearity, we can define the following additive eigenvalue, or ergodic constant.

Definition 10 (Additive eigenvalue).
c(0) == inf{c e R: Jue Lip(T") : H(x, Du(x)) < a.e.}.

The constant c(0) is called Mané critical value (in the language of dynamical system) or effective
Hamiltonian (in the language of PDEs via Homogenization), or ergodic constant.

It is clear that c(0) exists and is finite, since if we pick any u € Lip(T™) and denote
cy = esssup, .« H(x, Du(x)) then u < L + ¢y and thus —C < ¢(0) < cu. Roughly speaking,
for each P € R™ there exists a unique constant c(P) such that H(x, P + Du(x, P)) = ¢ can
be solved with a (reasonable) Lipschitz solutions u. If u € C', then one obtain a canonical
transformation in classical machanics that reduce the 2n unknowns Hamiltonian system
to n unknowns only.

Theorem 3.9 (inf — sup formula). We have
c(0) = ueLiig(an) (esssup,.nH(x, Du(x))) = uegl(an))r(ré%)é H(x, Du(x)).

Remark 13. In PDE, people often call c(0) the additive eigenvalue of the PDE, and the
second formula (inf-max formula) above is an analog of the inf formula for the principle
eigenvalue of elliptic PDE Lu = Au, where

A— inf (L@@
perl(Q) (@, @)
where the inner product is taken in [?(Q).
Example 2. Let us see how to find c(0) when H(x, p) = %\p\z —V(x) for (x,p) € T™ x R™, where
minyn V = 0. Naively, we have

c(0)= inf maxH(x,De(x)) > inf <max(—V(x))> =0.
@eCl(Tn) xeTn @eCl(Tn) \xeT™

Choose ¢ = 0 then c(0) < maxyen (—V(x)) =0, therefore ¢(0) = 0.

Remark 14. In the language of homogenization, the effective Hamiltonian is defined by

H(p)= inf max(H(x,p+D )
()= _inf  max (H(xp+ Do)

We have H(0) = c(0), and we know that H is convex. One of the open problem is to
understand deeply the behavior of H. In particular, where does H behaves nicely? What
is the set of singularities of H?

Theorem 3.10 (Existence). There exists w € Lip(T™) such that uw < L+ c(0). In other words,
H(x, Du(x)) < ¢(0) ae. in T

In fact, one can show that there exists u € Lip(T™) such that H(x, Du(x)) = ¢(0) a.e. in T"
(or even a viscosity solution). One way is using the vanishing discount procedure in PDE.
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Proof. Let (uy,cx) € Lip(T™) x R such that ux < L+cx a.e. in T™ (H(x, D(w) < ck) and
cx — ¢(0), the existence follows from the definition of c(0). Let tix(x) = ux(x) —ui(0) then
ti is bounded uniformly in T", thus by Arzela-Ascoli theorem 1y, — u uniformly on T"
for some u € Lip(T™). To show that u < L+ ¢(0), pick y € AC([a, b]; T™) we have

b
w(y (b)) —we(v(@) < J L(v(s), ¥(s))ds + c(0)(b — a).

a

Let k; — oo we obtain

u(y(b)) —u(y(a)) < J L(y(s),v(s))ds +c(0)(b—a)

a

and thus u < L+ ¢(0). O

Remark 15. We use the Lagrangian framework here as it is clear and stable under uni-
form convergence. The PDE framework is harder a bit, as if we start with

H(x, D (x)) < ck a.e. inTm,
U —u uniformly,

then it is harder to prove that H(x, Du(x)) < ¢(0) a.e., as Duy — Du is an issue here. It

can be resolved in the framework of viscosity solution.

Remark 16.

o If y: (—o0,0] = T" is a calibrated curve with y(0) = x, then some questions of
interest are
— Is there a rotation vector q = limy_,
- Ergodic behavior of vy.

Yt
7

{ws) — DpH(y(s), Duly(s))),  s<0,
v(0) = x.

Proposition 3.11 (Stability of calibrated curves). The following claims hold.
(@) IfT=Ugeny Ik with I; C I, C ...and v : T — T™ such that -yl is (L, u, c)-calibrated then
v is (L,u, ¢)-calibrated on 1.

(b) Let {yihenw € C'(la, bl; T™) such that vy, — ¥ in the topology of C'([a, bl; T™). If vy is
(L, u, c)-calibrated for all k € IN then so is ¥.

Remark 17. In general, additive eigenvalues occur in all kinds of nonlinear elliptic PDE
that have a maximum principle. One particular example is

—Au+ [Duf + V(x) = ¢(0) in T"

where V € C(T™). This came from the rate function in large deviation theory. The relation
between the additive eigenvalue ¢(0) and the principle eigenvalue to Laplace equation
can be seen via a Hopf-Cole transform

e(x) = e v — Ap =e Y (—Au+ IDuIZ)
= —Ap—V(xJe =—c(0)¢

and thus —c(0) is the principle eigenvalue of the operator —(A + V).
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Remark 18. Open question: —eAu® + [Duf?> + V(x) = c¢(0) in T™. What is the behavior of
{u®} as ¢ — 0 and fine details of expansion of c*(0) —c(0)? Does u®(x) —u®(0) converges
uniformly in the full sequence to u solving [Duf? +V = ¢(0)?

3.5. Existence of calibrated curves.

Theorem 3.12 (Relation between calibrated curve and ergodic constant). Assumeu < L+c
andy: 1 — T is (L, u, c)-calibrated. If 1 is of infinite length then we must have ¢ = c(0).

Proof. By Theorem 3.10 there exists v € Lip(T™) such that v < L+ ¢(0), therefore for every
(a,b) C I we have

b
w(y(b)) — uly(a)) = J L(v(s), ¥(s))ds +c(b— a)

b
v(y(b)) —v(y(a)) <J L(v(s),¥(s))ds +c(0)(b—a).

We deduce that
0< (c—c(0)(b—a) < va(Lip(w) +Lip(v)).

Therefore if I is unbounded we must have ¢ = ¢(0) (the critical value). O

Corollary 3.13. In order to have a weak KAM solution of negative (or positive) type, we must
have ¢ = ¢(0).

Lemma 3.14. Let u < L+cand vy : [a,b] — T™ be a (L, u,c)-calibrated curve. If u is differen-
tiable at y(t) for t € (a,b) then the gradient Du(y(t)) can be computed as

{Du(v(t)) = DyL(v(t),¥(t))
H(y(t), Du(y(1))) = c.

Proof. As a calibrated curve, v € C¥(q,b). If u is differentiable at t, € (a, b) then

t .

u(y(t)) —uly(to)) = L L{y(s),v(s))ds +c(t —to).

Since u is differentiable at y(ty), we obtain

Dufy(u(to))) - v(to) = Llv(to), ¥(to)) +c.
Thus ¢ = H (y(to), Du(y(to))) and Du(y(t)) = DyL(y(t),¥(t)) for any t € (a,b). O

Theorem 3.15. If u < L+cand vy : [a,b] — T" is a (L, u, c)-calibrated curve then u is differen-
tiable at y(t) for all t € (a,b) (however it may fail to be differentiable at the two end-points).

Remark 19. The idea of the proof can be easy understood using the language of viscosity
solution, or superdifferential. Basically, we show that at any point y(t), the supergradient
and subgradient of u are the same and contain only one vector, which is Vu(y(t)). To
do so, we construct C! functions that touch u from above and below, and show that their

gradients are the same.
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Proof. Ley y near x = y(t), we can construct naturally curves that going from y(a) to y(b)
passing y naturally by shifting y. Let us define

S—a

t—a

n(S)zv(SH( )(g—x), s€ ot

Clearly n(a) =vy(a) and n(t) =y, using u < L+ ¢ we have

Therefore

It is crucial that

v is calibrated — o(x) =u(x)

and u < ¢ for all y near x. It is clear that y — ¢ is continuously differentiable, hence

De(x) € DTu(x). Similarly, we can define
b—s
¢(s) :y(s)+ﬁ(y—x), s € [t,bl.

Clearly ¢(b) =vy(b) and {(t) =y, using u < L + ¢ we have

Therefore

Again, P(x) = u(x) and P(y) < u(x) for y near x, therefore Dy (x) € D u(x). However,
@ —1 > 0 everywhere and (¢ —1)(x) =0, thus De(x) = D (x), hence u is differentiable
at x =y(t). O

Remark 20. We can actually show directly that

Do(x) = D(x) = DyL(y(t),v(t))

as follows. As vy satisfies the Euler-Lagrange equation, we have

T d
Doy = | [(s —a) - (DyL(v, V) +Dvuv,w} ds

B 1
t—a

td
|| 55 s = DuLiv(s), ¥ ds = DuLv(0), ¥12)).

The existence of a calibrated curve and the weak KAM theorem are strongly related.
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Theorem 3.16 (Weak KAM theorem). There exists u € Lip(T™) such that uw < L+ ¢(0) and
for every x € T", we can find a calibrated curve y : (—oo,0] — T™ with y(0) = x, i.e., for all
t,t' > 0 then

t/
Wy (t) ~u(v(®) = | (Lr(s), 7)) +<(0)) s

t

We will prove this Theorem after some more preparations.

Remark 21. We have shown that in such a situation, u is differentiable at y(t) for all
t € (—o0,0). It might be the case that u is not differentiable at the end point x = y(0).

Remark 22. One may keep running the Lagragian flow passing t = 0 with the velociy
v/(07) to have a nice, smooth curve defined for the whole R — T™". However, there is
nothing to guarantee that this curve is calibrated, since a minimizer of the problem

t
u(y(t) —uly(t") = J L(y(s),v(s))ds + (t—t")c(0)

t/
is a solution to the Euler-Lagrange equation (a solution to the Lagrangian flow) but the
inverse may not be true.

3.6. Minimal action for a given time. We define h¢(x,y) to be the minimal cost it takes
to travel from x — y in a fixed amount of time t > 0.

Definition 11. For given x,y € T", denote by

t
hoy) = nf {JO L{y(s), ¥(s))ds : y(0) = x,¥(t) = y} . (3.2)

Remark 23. We note that h¢(x,y) is not a new object, but in this section we focus on the
dependence of h; on (x,y) more systematically. We can think of h¢(x,y) as some sort of
distance from x to y.

Proposition 3.17 (Properties of h.). We have the following:
- he(x,y) > t (inf( ) L(x,v)).
2. (Dynamic programming principle) For x,y € T™ and t,t’ > 0 we have

hev(x,y) = zier"lll"f“ (ht(X, z) +h’t’(Z/y)>'

3. Ifu e C(T™) with u < L+c then u(y) —u(x) < he(x,y) +ct forall x,y € TV and t > 0.
4. There exists an extremal curve (critical point of the action functional) v € C*([0,t]) such
that

=

t
el ) = L L), el

5. We have hi(x, x) +c(0)t > 0.
6. For each uw € 8_ and ty > 0O, there exists a constant C = C(u, to) such that for all t > t,
there holds

—ZHuHLoo(jrn) < ht(X,y) o C(O)t < 2”LLH]_oo(']rn) +C.

We postpone the uniform Lipschitz property of hy(:,-) for t > 6 > 0.
28



Proof. We observe that (1) and (3) are obvious, while (4) follows from the existence of a
C* minimizer, which is also an extremal curve. To show (2), let y connecting x to y in
time t and ¢ connecting y to z in time t’, connecting them we have a curve n that connects
x to z in time t + t/, hence

t/

t
L(¢(s—t),((s—1))ds = L L(y,v)ds—+ JO L (C, C) ds.

t+t/

EW L, f)ds = E Lo 1)+ |

t
Taking the infimum we have hi,/(x,z) < he(x,y) + hy(y, z), therefore

here(xy) < inf (0o z) +ho(zy)).

zeTn

Y

Conversely, for every curve curve y connecting x to y in time t+ t/, we can pick z = y(t),
then obviously the reverse inequality holds.
For (5),if t > 0 and x € T™, take a weak KAM solution uw € §_, then® as u < L + c(0), we
find that

0 =u(x) —u(x) < he(x, x) +c(0)t.

For (6), the lower bound is rather obvious. The upper bound is more important as we
need it to be uniform for t > ty. Let & : (—o00,0] — T™ be a calibrated curve ending at
£(0) = y. For t > ty, we pick z = &(tg —t) and connect x — z by finding a minimizer
v : 10, to] — T™ with y(0) = and y(ty) = z and

to

heg (x,2) = L Liv(s), 7(s))ds.

We have |hy,(x,z)] < C(ty) independent of z. Indeed, simply using the straight line
n(s) =x+ (s/to)(z—x) then”

to s z
hi, (x,2) < J L <X+t—(z—x),

) ds < tg sup L(x,Vv)
0 0 to

T xB(0,/n/t0)
We have

is a path connecting x and y.

6Ac’cually here any Lipschitz function u that is a subsolution to H(x, Du) < ¢(0) is enough, the existence
of such a solution follows from Theorem 3.10.

7We could do better by using the fact that as a minimizer, the velocity |y(-)| is bounded uniformly, then
we might not need the boundedness of the torus here.
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The key is along the calibrated curve we have optimality

t

he(x,y) + c(0)t < L L(n(s), f(s))ds +c(0)t
t—to

= [ (Lorton vis) + ) as ¢

0 to

(L(z(s), &(5)) +c(0)) ds

C(to) u(t—to)—u(to)
< Clto) + 2uf|ree(n)-

Remark 24. Fix x € T", y — h¢(x,y) can be thought of as a fundamental solution to
Oi(y,t) + H(z,DO(y,t)) =0  inT™ x (0, 00),
O (y,0) = dx(y).

In other words, hi(x,y) = ®(y, t).

Lemma 3.18. For each t > 0, there exists Cy > 0 such that
hi(x,y) < C¢ forall x,y € T™

Consequently, for each o > 0, there exists Ks > 0 such that if t > o then all minimizer vy satisfies
W (s)l < Kg for s € [0,t], i.e., if [V (to)| < Kg for some to then |y(t)| < Kg for all t > to.

Proof. We connect x to y by a straight line y(s) = x + {(y —x) for s € [0, ], then obviously

L(YIY) ds < tmax{L(x,v) : |\)| < ﬁ} .
zeTn t

t

hi(x,y) < L

therefore we can choose
n
Cy = t max {L(x,v) | < \/—_} .
zeTn t

Since y € C*([0,t]; T"), the above equation implies that there exists ty € (0,t) such that

Lly(to), ¥(to)) < C,  Ci= max {L(x,v) vl < @}

It is clear that t — C; is decreasing, thus if t > o then C; < C,;. With that fixed o, we
proceed to get ty € (0,t) such that

L(v(to),V(to)) < Co-
30



Since L is super-linear, there exists K, such that
Y(to) <Ko = Ip(to)l = [DyL(y(to), ¥(to))] < Ko.
By conservation of energy, H(y(s),p(s)) = H(y(to), p(to)) for all s € (0,t), thus
HiY(s),p(s) <Ko = Ip(s)| <Ky ¥se€(01).
In turns we obtain that

[v(s)l = [DpH(v(s), p(s))l < Ko

as well. 0

Remark 25. The essence of this lemma is that, to go from x to y in a time t, if t — 07
then the total cost blows up. For example, with a constant speed line segment then
v="Y% > o0ast— 0, we have

t

jtun(s),ms))ds -

L (n(s), yj) ds — oo
0 0 t

as t — 0% since L is superlinear. However, if t > o > 0 for some fixed o > 0 then the cost
remains bounded.

Theorem 3.19. For each o > 0, there exists C; > 0 such that hy : T" x T™ — R is Lipschitz
with constant Cy for all t > o.

Proof. Fix (x,y) and (%,§) in T™ x T". Take a minimizer path vy : [0,t] — T™ with y(0) =
x,v(t) =y and

t
he(x,y) = L L(v(s), ¥(s))ds

Fix ¢ > 0, let z; = y(e) and z; = y(t — ¢), we connect X, as following.

Let us define




we obtain a curve connecting X to {j in time t. We have

£ (g —x), ) — 2%

he(%,0) — he(x,y) = L [L <v(8) i ) _ L(v(s),ws))} s

£

t _ _ Ny
o {L (v(S) LSS ) + ‘%) —Lms),v(sn] ds.

t—e €

Let us consider [x — x|+ [§j —y| < 0. Since t > o, from Lemma 3.18 we have [y(s)| < K¢ for
all s € [0,t]. We see that i(s)| < [¥(s)|+ ¢. Choose ¢ = JTE we obtain that

M(s)| < Ko =Ko +4 for s € [0, t].
Thus there exists C, such that
L1, v1) = L0, v2)l < Co (1 —xal +lvi =val)  for il val < K.

We deduce that

he(X,9) —hi(x,y) < Co(R =X+ 1§ —yl)
and by symmetry we obtain

he(%,9) —hi(x, y)I < Collk —x[+ 1§ —yl).

If [ — x|+ [§ —y| > o, then since we are in T™", after a fixed finite m; € IN middle points
we can obtain the same estimate with C, replaced by mqCs. O

Remark 26.

1. Itis important to note that even as t — oo, the Lipchistz constant of (x,y) — h¢(x,y)

remains Cy.
2. As t — 0" howerver, the Lipschitz constant blows up and C; — oo as ¢ — 0. Since
~ n
1< € = max {ILix vl s e T < Y.

3.7. The Lax-Oleinik semigroup (Optimal control formula). Given g € C(T"), we
can define

u(x,t) = inf {ht(y,x) n g(y)}.

yel™
From the viewpoint of Bellman, for t > 0 we have

1. u(x,t) = g(yo) —|—j(t) L(y(s),v(s))ds for some yy € T™ and y € C¥([0, t]; T™) minimizer
with y(0) = yo and y(t) = x.

2. u(x,0) = g(x) on T™ and a regularizing effect, even though we start with con-
tinuous only datum wu(x), instantaneously for t > 0 then u(x,t) is Lipschitz with
constant at most C;.

3. Dynamic programming principle:

u(x,t+ o) = min [uo(y) + ht+g(y,x)]
yeln

= felqirrl [w(y) + (52%1 hi(y,z) +t0(Z/X)>] = i?%r? [u(z,t) +ho(z,><)]-
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We can show u(x, t) is a viscosity solution to the Hamilton—Jacobi equation
ug(x,t) + H(x, Du(x,t)) =0  inT" x (0, 00),
u(x, 0) =up(x).
We introduce the following new subject, which is motivated from the formulation above.

Definition 12 (Lax-Oleinik semigroup). T, : C(T™) — C(T™) is defined by
Touk) = inf {ney, 0 +uly) }

t
_ i {L Liv(s), ¥(s))ds + u(y(0)) : v € AC([0, 4; T), v(t) = x}

fort>0,and Tyu=u

Remark 27. We can define the Lax-Oleinik semigroup for all function u: T™ — R but we
restrict ourselve to C(T™") to avoid technicalities.

This object is well-defined from the following proposition.

Proposition 3.20 (Preliminaries properties of T, for t > 0). We have the following
(i) minu+t min L<T,u<minu+ max h(.,-).
Tn TnxRR™ Tn TnxT™
(ii) If t > o > 0 then x — T, u(x) is Lipschitz with constant K.

Proof. The property (i) is rather obvious. For (i), let x,z € T", we can find X € T™ so that
T, u(x) = u(x) + he(x,x) and T, u(z) < u(x) +he(x, z), thus

T u(z) — Tou(x) < he(X, z) —he(x,x) < Colx — 2]

by Theorem 3.19. By symmetry we have the conclusion. O

Proposition 3.21 (Semi-group properties of T, for t > 0). We have the following
() Tog =T oTg and T (u+c) =Tu+cforce R
(ii) Ifu,ve C(T“) and uw < vin T, u < T, v (monotonicity).
(iii) If w = inf; gy for a family {ui}ie; C C(T”) then T, uw = infi; Ty wi.

Proof. From the Dynamic Programming Principle of h; (Theorem 3.17) we have

Tesulx) = yier}rfn (u(y) + higs(y, x)]

= inf
yen

:ziel%rfn [hs(z, )+y161}rfn< u(y )+ht(y,2))}

u(y) + inf (ht(y, z) + hs(z, x))}

zeTn

= inf (ho(zx) +Tru(z))

zeTm

=T, (Tru(x).

The identity T, (u+c) = T, u and the monotonicity are obvious. Lastly, if u = inficjwy
then it is clear from the monotonicity that T, u < infic; T, wi. Conversely, fix x € T™ we
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show that infic; T, ui(x) < T u(x). For any € > 0 there exists i € I so that u;(x) —e < u(x),
then

i_nIth’ui(x) —e <Trw(x)—e =T, (wi(x)—¢) < Ty u(x)
(S

Let ¢ — 0 we obtain the conclusion. O
Remark 28 (Hopf-Lax formula). In case H(x,p) = H(p), which implies L(x,v) = L(v) then

the Hopf-Lax formula can be deduced directly from the Lax-Oleinik semi-group. Let
uy € C(T™) be the initial condition, we have

Touolx) = inf |uoly) + ey, x)] = inf

t
up(y) + inf J Lh’/(s))ds] .
Y(0)=y,y(t)=x Jo

By Jensen’s inequality we have

1t 1t _
L] ttenas > 1 (¥ Joy(s)ds> 1 (%)

and the inequality can be achieved by choosing v as a straight line, thus

T, u(x) = inf [uo(y) +tL (ﬂﬂ .
yeln t

Corollary 3.22 (Non-expansive property of the semigroup). For u,v € C(T") and t > 0

then || Ty w— Ty v||Loo(pn) < [[W—V||reo(rn). As a consequence t — || Ty u— T V||Leo(n) IS nON-

increasing.

Remark 29. Because of this non-expansive property, we can approximate solution T, u
by nice initial data u, — u uniformly where uy € Lip(T™) instead.

Proposition 3.23. For a given u € C(T™) we have lim .o+ T, u = wand t — T, u is uniformly
continuous.

Proof. We have

T, u(x) = inf (u(y) + ht(y,x)> <u(x) +he(x, x) < u(x)+tL(x,0)

by choosing y(s) = x for x € [0,t], thus limsup, ,,. T u(x) < u(x). We can reduce the
problem to showing for u € Lip(T"). For any y € AC([0, t], T™) with y(t) = x we observe
that by superlinearity, L(x,v) > Clv| — C for v € R", thus

t t

L(y(s),v(s))ds = u(y(0)) + CJO [v(s)lds — Ct

wly(0) + |

0

t
> u(x) — Cly(t) —y(0)] + C j J(s)ds| — Ct

0
= u(x) — Cly(t) =v(0)| + Cly(t) —y(0)| — Ct.

Thus liminf; o+ T, u(x) = u(x). We also have that [T, u(x) —u(x)| < Ct. O
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Corollary 3.24. Fix o > 0, then the family of functions {T, u: u € C(MT™)} is equi-Lipschitz on
T" x [0,00). As a consequence, T, (C(T“) NB(0, R)) is pre-compact in C(T™) for t > o and for
any R > 0.

Remark 30. Here we have the regularizing effect, that is T, u is Lipschitz both in space
and time immediately when t > 0, even though we only started with u € C(T™).

Question 5. Show that if u € Lip(T™) then [T, u(x) — T, u(y)| < Clx —yl for all x,y € T" and
forall t > 0.

Now we are ready to prove Theorem 3.16.

3.8. The weak KAM theorem proof via dynamical system.
Theorem 3.25. There exists u_ € C(T™) such that
Tru_+c0)t=u_ forall t > 0.

Proof. Let u € C(T™) such that u < L+¢(0), i.e., H(x, Du(x)) < ¢(0) a.e. in T". We show®
t (T{u%—c(O)t)

is increasing (as a function in C(T™)).

e We show u(x) < T u(x)+c(0)t for all t > 0. Take any y € AC([0,t]; T") with
v(0) =y and y(t) = x, we have u < L+ ¢(0), thus

u(x) < uly) + L L(v(s), ¥(s))ds + c(Ot.

Taking infimum over all y connecting y to x in time t and then over all y € T™ we
obtain u(x) < T, u(x) +c(0)t.
o If 0 <t<t' wehaveu<T, u+c(0)(t'—t). Using the semigroup property
Tru<T oT, u+c(O)(t' —t) =T u+c(0)(t' —1t)
which gives is the desired property.
Now we show that there exists C > 0 such that
T u(x) +c(0)t < C forallx e T, t > 0.

As u € Lip(T™), (x,t) — T, u(x) is globally Lipschitz. We observe that, if for any t > 0
there exists x; € T™ such that T, u(x;) + c(0)t < u(x;) then by the Lipschitz property

Tou(x) +c(0)t <ulxy) +Clx—x¢f < C

and hence we have boundedness. Thus assume the contrary that, there exists r > 0 such
that, there exists § > 0 and

T u(x)+c(0)r > u(x) +0
for all x € T™, we will derive a contradiction. Using the semigroup property we have
Tru(x) +c(0)mr > u(x) + md — Tu(x) + ¢mr > u(x)

8Universal PDE phenomenon: take a subsolution and run the PDE, then we increasing sequence.
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forall x e T and m € IN and { = ¢(0) — % > 0. This allows us to define

w(x) = inf (Tt_u(x) + Ct) = inf (Tt_u(x) + Ct).

t>0 o<t<r

It is clear that w(x) < u(x) and w € Lip(T™). By the property of the semigroup we have
T (wW+is) =T, (gg (T;u(x) + Ct) + cs> = inf (T;su(x) ot s)) > wix).

Take any path y € AC([0, s]; T") then

S

w(y(s)) < Ty (w4 Cs) =T, w+ s < w(y(0)) + L L(y(t),v(s))dt+ Cs.

In other words, we have w < L + ¢, thus H(x, Dw(x)) < ¢ < ¢(0), which is a contradiction
to the definition of ¢(0). Now |T; u(x) 4+ ¢(0)t| and is bounded, equi-Lipschitz for t > o
and increasing, thus we can define

w_(x) = lim (T;u(x) + c(O)t).

t—o0

We show that v is the function that satisfies T, u_ 4 ¢(0)t = u_. By continuity (ux — u
then T, ux — T, u) we have

T, u_(x)+c(0)s =T, ngglo (T{u(x) + c(O)t)] +¢(0)s

= lim T (T;u(x) +c(0)t+ C(O)s)

t—o0

lim (thrsu(x) +c(0)(t+ s)) =u_(x).

t—o0

OJ

Remark 31. In general u_ is not unique, in the next part of the note we will characterize
solutions to H(x, Du(x)) = ¢(0) € T™ in terms of minimizing measures.

3.9. The weak KAM theorem proof via fixed point theorem.
Theorem 3.26 (Using Schauder’s fixed point theorem). There exists u_ € C(T™) such that
T, u_+cOt=u_  forallt>0.

Proof using Schauder’s fixed point theorem. Let E = C(T™)/IR, we view each element of E as
[u] and [w] = [uy] if u; = uy + C for some constant C € R. Also ||[ul|[g = inf.er ||u+
¢llree(n)-

e AsT, (u+c)=T, u+cwecanview T, : E— E.

e We recall that for each o > 0, the family {T, u(x) : (x,t) € T™ x [0,000)} is equi-
Lipschitz. In other words, for each fixed o > 0 we see that T, (E) is equi-Lipschitz
in T™ with constant C, and thus for all [@] € E then [|[¢]|[g < Cov/n.

e By Arzela—Ascoli theorem, T; (E) is compact in E, thus by Schauder’s fixed point
theorem there exists [u,] € E such that

T ([ug)) = [uol — Tio (us]) = [ue]

for all k € IN.
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e Let 0 =27 and [u] € E be the fixed point of T, ; (fyl) = [u], then

T () =yl forallk e N.

By choosing different values of k we obtain that

T ([w)) = [y] for all t > 0.
Consequently, we deduce that

T, ([u]) = [u] for all t > 0.
e For each t > 0 we can find ¢; € R such that T, u = u+ ¢, which means t — ¢, is

additive

Ctis = Ct + Cs foralls,t > 0.
It is also clear that t — ¢ is continuous since t — T, u is continuous, thus c¢; =
(—c)t for some constant ¢ € R, then T, u+ct=ufort > 0.

The fact that ¢ = ¢(0) come indirectly later, as we will show that if T, u+ct =u for all t
then u is a weak KAM solution of the negative type, that is for each x € T" there exists
a backward characteristic yx : (—oo,0] — T™ with y(0) = x. Theorem 3.12 gives us that
c =c(0). O

Proof of Theorem 3.16. Now we show that the existence of u € C(T™) with T, u+ct = u
for all t > 0 implies the existence of a backward characteristic curve ending at x for any
x e T™.
e Fix x € T™, note that u(x) = T, u(x) + c. There exists a minimizer y : [-1,0] — T"
with y(0) = x that realizes T, u(x), that is

0
u((x) = (u(Y(—U) +J] L(Y(SLW’/(S)MS) +c.

e We have u(y(—1)) = T;u(y(-1)) + ¢, thus we can choose vy : [-2,—1] — T" that
realizes T Tu(y(—1)), i.e.,

L(Y(S)A’/(S)MS) +c.

We can connect continuously so that y : [-2,0] — T™ is absolutely continuous with
v(0) = x and

0
W) = uly(-2))+ | Livls) Fls)ds + 2.

We can repeat this procedure to obtain y : (—oo,0] — T™ as a calibrated curve for u with
v(0) = x. By Theorem 3.12 we have ¢ = c(0) and furthermore y € C*((—c0,0]) satisfying
the Euler-Lagrange equation (minimizer on each interval [a, b] C (—oo,0]). O

Remark 32. For each t > 0 we define p; as a probability measure on T™ x IR™ that is
supported in {(y(s),v(s)) : s € [-t,0]}. Then the behavior of y(t)/t as t — —oo can be
studied via the limiting measure p; — p. These limiting measures are called Mather
measures.
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Remark 33. The weak KAM theorem gives us the existence of uy € C(T") such that
Ty up(x) +c(0)t =up(x) forx e T™.
In other words, if we run the Hamilton-Jacobi equation
{ut(x,t) +H(x,Du(x,t) =0  inT" x (0,00),
u(x,0) = uo(x)

with this special initial datum uy then solution is u(x,t) = up(x) —c(0)t, a separable
solution. In this way, it is rather clear that we have another proof for the weak KAM
solution (solution to the cell problem) via PDE method, the vanishing discount problem
(see [20]).
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4. MATHER MEASURES AND MATHER SET

Our standing assumptions through out this chapter will be the following.

L e C¥T™ x R") for some k > 2,

lim|vHoo (inf']rn L(I)\CJ,IV)) = 400, (L)

D2L(x,v) = 0 for all (x,v) € T x R™

As usual, the natural corresponding assumptions on H follows.

H e CK(T™ x R") for some k > 2,

im0 (inan L(lxpff)) — too, (H)

D7 H(x,p) - 0 for all (x,p) € T x R™.

4.1. Outline.

(1) Flow invariant measure (under the Lagrangian flow), and the new representation
formula of ¢(0) by minimizing over measures.

(2) Mather measures (minimizing (u, L) among flow invariant measures).

(3) Mather set ﬁo (closure of the union of supports of all Mather measures) and the
projected Mather set.

(4) Important property of point (x,v) € Mo: values of u_ (the weak KAM solution)
along the flow at two endpoint is exactly the total cost (of L) along the flow.

(5) Compactness of Mo, uniqueness set for weak KAM solutions and the Lipschitz
graph theorem.

The weak KAM theorem gives us the existence of uy € C(T™) such that, for each x € T™
there exists a calibrated curve y : (—oo,0] — T™ absolutely continuous (actually it is C*)
such that vy(0) = x. We recall that uy is differentiable at y(t) for all t < 0 and

Duo(v(t)) = DyL(v(t),7(1))

for al t < 0. The goal is now to study the behavior of y(t) as t = —oo, in particular any
rotation vector y(t)/t — § € R™ as t - —o0.

4.2. Invariant measures under Euler-Lagrange flow. Let us recall that the Lagrangian
flow is defined by ®k(x,v) = (y(t),V(t)) where

{% (DVL(v(s),7(s))) = DxL(y(s),¥(s))ds, s #0,
(v(0),7(0)) = (x,v).

Definition 13. A probability Radon measure n € P(T™ x R™) is an invariant measure or
invariant under the Euler-Lagrange flow if

Ll"“x]R“ P <¢%(X,V)) du(x,v) = LrnX]Rn ¥ (x,v) du(x,v)

orall t > 0 and \y € BC(T™ x R™;IR), the space of bounded continuous functions.
P
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With this definition, we have a new formula to compute c(0).

Theorem 4.1. Let Py be the set of flow invariant Radon measures u € P(T™ x R™), we have

c(0) = — inf J L(x,v)du(x,v).
nePL JTn xR

Proof. Take a flow invariant measure p € P(T™ x R"). For each (x,v) € T™ x R", we run
the Lagrangian flow ¢L(x,v) = (xv(t), (xv(t)). Let u € C(T™) be the weak KAM solution,
since u < L+ ¢(0) we have

u (7‘(0 (D(%(x,v)> —u <7ro CDE] (x,v)) < JO] L ((DI(‘(X,V)) dt+c(0) (4.1)

where 7 : T" x R™ — T™ be the natural projection. Denote ti(x, &) = u(x) on T™ x R",
then

u (7’[0 q)%(x,v)) =1 (d)%(x,v)) .

Integrating (4.1) with respect to y, since p is invariant we deduce that

0= JT“XR“ (ﬁ (cb%(x,v)) —1 (d)E] (x,v)) )du(x,v)

< JO1 (J'"JF“X]R“ L (d)%(x,v)) du(x,v)) dt+c(0)

0
= J (J L(x,v)du(x,v)) dt+c¢(0) = J L(x,v)du(x,v) 4+ c(0).
-1 \JTnxR" TnxRR™

We deduce that

—c(0) < inf J L(x,v)du(x,v).
HEPL JTn xR

For the other direction, fix xo € T™ let vy : (—o0,0] — T™ be a calibrated curve from the
weak KAM theorem, then for all t > 0 we have

Define puy € P(T™ x R™) as

0
(b, 0) = Lrn | blx,y) dalx,v) = : wa(s),v(snds for 1 € BC(T™ x R™),

We have
u_(y(0)) —u_(y(—t))
t

Since [[V/[1oo((—c0,0) < C We see that

_ J L(x,v)du(x,v) + c(0).
TnxRn

supp(pe) € T x B(0, C) for all t < 0.

Assume u; — u weakly for some u € P(T™ x R") as t; — oo, we deduce

—Ccp = J L(x,v)du(x,v).
T xRn™
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We have left to show that p is a flow invariant measure. Take { € BC(T™ x R™) we need
to show that

[ w(etem)antm =] wesviantsy

for all k > 0. By definition of p; we have

L 1(° _
J"JT”XR“ i <¢K(X,v)> dut(X’V) - E J'_tlb(’Y(K + 5),Y(K + S))ds

since vy satisfies the Euler-Lagrange equation. Thus we need to show

1 0
hm—jmmw+mwmme{ Wi, v)dulx, v).

tj—o0 t] _tj TnxRn

By definition of p; we already have

1 0
hm—JuMMWMMF{ B (x,v)dulx, v).
- T

tj—o0 t] ny«R"
Therefore, we just need to compare the difference
0

0
|| wivtsnitonds= | vt s) vix+onas

1

Y

K

0
|| v itsnas=[  wivis) visnas

j *(tjﬁ*K)

1
Y

— 0

as tj — oo since k is fixed. O

Example 3. Let n(t) = x + vt for some irrational vector v, then {n(t) : t < 0} is dense in T™. If
we define the measure . as above, i.e.,

0
() = 1 | dln(s)i(s)as
—t
then if we — w it is not hard to see that u = dx x §,, where dx is the Lebesgue measure on T™.
Indeed, let \p(x) = &(x,v) then

1 0 0
() =1 | @lxrsvvids= | wier wee.
—t 1

Note that
0 0
J 11])(x+tv£)d£—J' W(x +vE)déE,

—1

+| 0O

<

we deduce that
0
<w®=J Mwﬂ&wﬁzJ dly,v)dy.
1 T

Therefore it is clear that p = dx X d,.
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4.3. Mather measures and Mather set. A flow invariant measure p € P(T™ x R") that
minimizes (u, L) is called a Mather measure, i.e.,

—c(0) = Lrn R L(x,v)du(x,v).

Definition 14. The Mather set is defined by

ﬁo = U supp(p)
u Mather

and the projected Mather set is defined by
Mo =T (ﬁo)

where 7 : T x R™ — T™ is the natural projection m(x,v) = x.

Recall that if v : (—o0,0] — T™ is (L, u, c(0))-calibrated then

t/
Wyt —uly(1) = | (Liv(s), 7o) +<0]) s

t

for t,t’ < 0. This also holds for any Lagrangian flows started at any point (x,v) € My, as
in the following Proposition.

Proposition 4.2. For any (x,v) € ﬁo there holds

u (7:0 d)%/(x,v)) —u (TIO q)%(x,v)) = Jt, (L (cbg(x,v)) + c(O))ds

t
where u is a weak KAM solution.

Proof. Since u < L+ ¢(0), we have

tl

u (7'(0 d)b(x,v)) —u (7’(0 q;tL(x,v)) < J

t

(L (¢50xv)) +c(0)) ds. (4-2)

This holds for all (x,v) € T™ x R™, thus taking integration against the Mather measure n
we obtain

0= o st i) o

< r (J L(x,v)du(x,v) + c(O)) ds =0,
TnxRn

t
Therefore the equality in (4.2) must happen for any (x,v) in the support of p. By conti-
nuity we can extend the equality to (x,v) € M. O

Remark 34. If (x,v) € ﬁo and (x(t),x(t)) = ¢L(x,v) for t € R then by shifting the time
forward and backward we obtain that u is differentiable at all x(t) for t € R, and
Du(x(t)) = DyL(x(t), x(t))

which gives us
x(t) = DpH(x(t), Du(x, t)).
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Therefore from the fact that H(x, Du(x)) = ¢(0) we have Du(x) is bounded, which implies
x| is bounded.

Corollary 4.3. Following Theorem 3.15, if (x,Vv) € M, then by choosing t < 0 < s and applying
Theorem 3.15 to the calibrated curve y(t) = 1o GL(x,v) in (t,s) we deduce that any weak KAM
soltuion u_ is differentiable at x and Du_(x) = DyL(x,v). Thus H(x, Du_(x)) = c¢(0) and

M, C {(X,V) :H(x, DyL(x,v)) = c(O)}.

Hence My is compact.
4.4. Uniqueness of weak KAM solution of negative type (uniqueness set).

Theorem 4.4. If wy,uy € C(T™) are weak KAM solutions of negative type such that w; = u, on
My then wy = uy on T™ We say M is a set of uniqueness.

Proof. Let v : (—o0,0] — T™ be a calibrated curve with respect to u; with y(0) = x¢. For
t < 0 we have

0
Wy (0) = w (y (1) = L Llv(s), 7(s))ds + c(0)
0

W (0)) — wly(b) < L L(v(s), ¥(s))ds + c(0).

For any t < 0 we have

0
ta(o) — 1 x0) < wy(0) —wr(y() = - | (walv(s) —wlvsD)ds @)

for any ty < 0. Define p; € P(T™ x R") as

0
) = [ ) dmlxv) = 1 | blr(s) vis)ds

for all Y € BC(T™ x R™). Let {i(x,v) = uwomn(x,v) where 7t: T" x R"™ — T" is the natural
projection, we have

1
T

[ (wtrisn —worton)as=[ @) an

tx T xR™
Assume p; — u for some Mather measure p (according to Theorem 4.1) as t, — oo, we
obtain from (4.3) that

walxo) ~urlxo) € | () du =0
TnxRn
if u; =uy on supp(p). By symmetry u;(xp) = uz(xo). O

4.5. The Lipschitz graph theorem. We show that a weak KAM solution u € C(T") of
H(x, Du(x)) = c(0) can be C"! in the projected Mather set. We start by showing such a
weak KAM solution is semi-concave locally in x € M.

Theorem 4.5. If u is a weak KAM solution then there exists C > 0 such that for all x € My and
h € R™ we have
lu(x +h) — 2u(x) + u(x —h)| < CIh/%.
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Proof. For (x,v) € ﬁo, we write (x(t),%(t)) = ¢L(x,v) for t € R. By Proposition 4.2 we
have

u(x(1)) —u(x(0)) = L L(x(s),x(s))ds 4 ¢(0)

0
u(x(=1)) —u(x(0)) = J] L(x(s),x(s))ds 4 ¢(0)

The main idea is the path x(-) going from x(1) to x(0) or x(—1) to x(0) as above are optimal,
while if we perturb a bit to path going from x +h for h small then we have sub-optimality
instead. We build a path going from x 4+ h to x(1) and a path going from x —h to x(—1),
respectively, by

XT(s) =x(s)+(1—s)h, 0<s<1,
x (s) =x(s)— (1 —s)h, 0<s< .

We obtain from u < L + ¢(0) that
1

u(x(1)) —u(x+h) < J L(x(s) +(1=s)h, x(s) —h)ds +¢(0)

0
1

ux(=1)) —u(x—h) < J L(x(s) —(1—s)h,x(s) + h) ds + ¢(0).

0
Combining these equations and Taylor expansion we obtain

2u(x) —u(x+h) —u(x—h) = —Ch?

where C depends only on ||D2L||Loo(1rnx§(o,m] and R = ||x||r~ is bounded (Lemma 3.18). O
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5. THE PEIERLS BARRIER

5.1. Outline. Our standing assumptions through out this chapter will be the following.

L e CKT™ x R") for some k > 2,
im0 (inan “W) = +o0, (L)

vl

D2L(x,v) = 0 for all (x,v) € T x R™

As usual, the natural corresponding assumptions on H follows.

H e CK(T™ x R") for some k > 2,

My yo (inan %) = +o0, (H)

2
DsH(x,p) = 0 for all (x,p) € T™ x R™.

Outline.

(1) Introduction to this notion (introduced by Mather around 1993) and its basic prop-
erties. Heuristically it is the cost of going from x to y in an infinite amount of time.

5.2. Introduction. Following the minimal action for a given time h(x,y) as in (3.2), it is
natural to ask what is the cost going from x to y in an infinite amount of time?

Definition 15 (The Peierls barrier). We define h: T™ x T™ — R is defined as
h(x,y) = liminf (ht(x,y) - c(O)t).
t—oo

Some of the properties of the map (x,y) — h(x,y) can be derived from properties of the
minimal action h¢(x,y) for t > 0.

Lemma 5.1 (Properties of h(x,y)).

1. h(x,y) is uniformly bounded and (x,y) — h(x,y) is uniformly Lipschitz.
2. Ifu < L+c¢(0) then u(y) —u(x) < h(x,y), consequently h(x,x) > 0.
3. (Triangle inequality) h(x,y) + h(y, z) > h(x, z), consequently h(x,y) + h(y,x) > 0.

Proof.

1. The boundedness of h follows from Proposition 3.17. For t > 1 we have h(-,-) is
Lipschitz with constant at most C;, hence as t — oo we have h is Lipschitz with
constant at most C;.

2. If u < L+¢(0) then

t
wly) —ulx) < inf{jo Liy(s), 7(s))ds + c(0)t : y(0) =%, y(t) = y} .

Let t — oo we deduce that u(y) —u(x) < h(x,y). Pick u € 8_ then the result
follows.
3. It follows from the fact that hi(x,y) = inf,cn (hi(x, z) + hi(z,y)). The claim follows
from h(x,x) > 0 and h(x,y) + h(y,x) > h(x,x).
Il
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5.3. Connection between the projected Mather set and the Peierls barrier. We now
study deeper properties of the Peierls barrier.

Theorem 5.2. If x € My then h(x,x) = 0.

Proof.

e Take xo € M, then there is v € R™ such that (x,v) € ﬁo. Pick u to be a Mather
measure such that (x,v) € supp(n).

e By Poincaré’s recurrence theorem, the current points of ¢+ contained in supp(p)
form a dense set in supp(p).

e By the continuity of h, we can assume (x, V) is a recurrent point of ¢L, then for any
r > 0 there exists t, — oo such that ¢, (x,v) € B((x,v),r) for all k € N.

Fix u € §_, we have

u (no (D%(x,v)) —u(x) = J: L(d)g(x,v)) ds + c(0)t.

As (x,v) a recurrent point, there exists a sequence t, — oo such that mo d)%k(x,v) — X as
tx — oo. Let tx — oo we deduce that Therefore

t
. L _
tll(l{)rgo UO L(d)s (x,v)) ds + C(O)t] =0.
Thus the cost of connecting x; = 7o d)%k (x,v) to x vanishes as t, — oo, hence h(x,x) = 0 if
X € Mo. ]
Theorem 5.3 (Stability and approximation).

1. For x,y € ™, there exists sequence of minimizing extremal curves vy : [0, ti] — T™ with
ty — oo such that v« (0) = x, yx(tx) =y and

te
hixy) = lim (L Liya(s), 7(s))ds +c(0)tk> .

2. If vy : [0,t] — T™ is a sequence of continuous piece-wise C' curves with t, — oo such
that v (0) — x, yx(tx) — y then

h(x,y) < liminf <th L{vk(s), v(s))ds + C(O)tk> :

k—00 0

Proof. The proof follows from the definition h(x,y) = lim; (ht(x,y) + c(O)t).

5.4. Weak attractor.

Lemma 5.4. Let V be an open neighborhood of ﬁo in T x R™. Then, there exists T = T(V)
such that if y : [0,t] — T™ is a minimizing curve with t > T then there exists s € [0, t] such that

(v(s),¥(s)) € V.

Proof. Assume the contrary, then we can find ty — co and vy : [0, t] — T™ minimizing
curves such that

{(nlshds)) so<s <ufnv=o.
46



We can always assume ti > 1. From Lemma 3.18 there exists a compact set K such that

{(vls) ls)) 0 < s <t T x K,

We now construct a Mather measure from {yy} to get a contradiction. Let py, € P(T™ x R")
be such that

tk
J w(x,wduk(x,v):tlj Wlvils), Yels))ds
T xR™ k JO

for all bounded continuous 1. We see that supp(uy) C T™ x K, thus we can find a weak
convergent (in measure) subsequence p, — p. Clearly supp(p) € T™ x K and similar to
Theorem 4.1 we find that p is invariant under ¢L(-,-). We have

i
J L(x,v)dis(x,v) = H Lvels), Tils)ds = e, (vid0), ve(t)
TnxR™ k JO k

Using the boundedness of (x,t) — h¢(x,y) uniformly for t > 1 in Proposition 3.17, as
tx — oo we deduce that

J o L(x,v)du(x,v) = —c(0).
Thus p is a Mather measure arird Xslflppu NV = which is a contradiction. O
5.5. The Aubry set.
Definition 16 (The Aubry set Ay). The Aubry set Ay is defined by
Ao ={xeT":h(x,x) =0}

Remark 35. It is clear that Ay # 0 as 0 #= My C Ag C T™.
We have the following properties (characterization) of the Aubry set A,.

Proposition 5.5. The followings are equivalent.
(i) x € A, i.e., h(x,x) = 0.
(ii) There exists a sequence {yy} of continuous, piece-wise C' curves vy : [0,t] — T™ with
Yx(0) = vi(ty) = x and t,, — oo such that

i
lim (J'o L(yk(s),i/k(s)) +C(O)tk> =0.

tx—o0

(iif) There exists a sequence {y\} of minimizing extremal curves vy : [0, ty] — T™ with vy, (0) =
Yx(tk) = x and t, — oo such that

e
lim (J’ L(yk(s),yk(s)) +C(O)tk> =0.

tx—o0 0
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6. VISCOSITY SOLUTIONS
6.1. Outline. As usual, our standing assumptions on H are

He CYT™ x R") for some k > 2,

iy, o0 (inan “fpff)) = +oo, (H)

2 n n
DsH(x,p) = 0 for all (x,p) € T™ x R™.

6.2. Vanishing viscosity process. To find a solution for
ue(x,t) + H(Du(x,t)) =0 (x,t) €e R™ x (0,T),
u(x,0) =g(x) (x,t) € R" x{0},
we look at the unique solution u® of the second-order problem with small diffusion

ug(x,t) + H(Du®(x,t)) = eAu®(x,t) (x,t) € R* x (0,T),
u(x,0) = g(x) (x,t) € R™ x {0}
and passing ¢ — 0, using maximum principle to select a weak solution. The idea was
originally introduced by Fleming, Kruzkov in deriving Euler equation from Navier-Stoke
equation, and was done for Hamilton—-Jacobi equation by Crandall-Lions and Evans

(1960-1980). The main idea is using maximum principle to kick the derivative to test
function, resembling L*°-integration by parts.

6.3. Large time behavior of solutions. Let us consider the equation

{ut(x,t) T H(x, Du(x,t)) =0 (x,t) € R™ x (0, T),

(6.1)
u(x,0) =g(x) (x,t) € R" x{0},

The optimal control formula reads

t
u(x, t) =inf {JO L(v(s),v(s))ds +g(v(0)) : v € AC([0, t]; T"), y(t) = X} :

From the existence of a minimizer, there exists z € T™ and a C* curve & : [0,t] — T™ with
£(0) =z, &£(t) = x such that u(x, t) = f(t) L(&(s),&(s))ds + g(z). The fact that & € C* follows
from the Euler-Lagrange equation which & solves

S (DuL(e(s),é(s)) = DLL(E(s), éls)),

We recall that the ergodic problem
H(x, Dv(x)) = ¢(0) inT" (6.2)

has a lot of solutions and if v is such a solution to (6.2) then u(x,t) = v(x) —c(0)t is a
solution to (6.1) without the initial condition. We thus hope for u(x,t) ~ v(x) —c(0)t as t
large for some v solves (6.2).

N
w

N
+

Theorem 6.1. Let u be a viscosity solution to (6.1), then as t — co we have

lim (u(x,t) + c(O)t) =v(x) in T

t—o0o

where v is a solution to the ergodic problem (6.2).
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Heuristic proof following Fathi. The key ingredients are the followings.
1. There exists a minimizing curve & € C* with £(t) = x such that

u(x, ) = JO L(E(s), £(s)) + g(£(0))

and we have the conservation of energy along &(-) as s — H(&(s), &(s)) is a constant
for all s € (0,1).

2. The Mather set M is a weak attractor such that M c {x € T™ : H(x, Du(x)) = ¢(0)}.
For ¢ >0, let W, = {x € T™: H(x, Du(x)) € (c(0) —¢,c(0) +¢)} is an open set in T™,
then M Cc W,. There exists T; such that if t > T, then there exists 5 € [0, T,] such
that

H(&(3), Du(&(3))) € (c(0) —¢,c(0) +¢)

which implies that
H(&(s), Du(&(s))) € (c(0) —¢,c(0) +¢)

for all s by conservation of energy, this holds for all s instead of 5§ only, which

is remarkable. Therefore using the equation we obtain |u; ~ —c(0) £+ ¢ | when t is
large.

3. Concerning the ergodic problem (6.2), any weak KAM solution of negative type
v € 8_is a solution to (6.2). For such a weak KAM solution, given any x € T™ there
exists a calibrated curve y : (—oo,0] — T™ with y(0) = x so that if —co <s <t <0
then

t
v(y(t)) —vly(s)) = J L{v(s), v(s))ds +c(0)(t —s).

S
In other words, v < L+ ¢(0) with the exact equality. Using convexity it preserves
the < property onto any limiting solution 1., we may get. This is vague but we
will see in the proof.

OJ

Remark 36. This is a very nice framework but it does not cover every important direction
in large time behavior of (6.1) (e.g., H is singular or the problem is set in a non-compact
domains: forced mean curvature flow, coagulation-fragmentation, .. .).

To make the proof of Theorem 6.1 clearer. We state the following Lemma on the weak
attractor of M and how it relates to solution u(x, t) of (6.1) independently.

Lemma 6.2. For ¢ > 0, there exists T, > 0 such that for each t > T, if Du(x,t) exists then
H(x, Du(x, t)) € (c(0) —¢,¢(0) +¢).

Proof. It is a simple consequence of the weak attractor property of the Mather set. As we
assume Du(x, t) exists, we can find a minimizer (run the Lagrangian flow with the initial
data known) curve v : [0,t] — T™ with y € C¥, y(t) = x such that

t

u(x, t) = L L(v(s),v(s))ds+g(y(0)) ~ and  Du(x,t) = DyL(y(t),V(t)).

We note that the second condition is simply ¥(t) = D, H(x, Du(x, t)).
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Recall that £ : (x,v) = (x,p) maps £(x,v) = (x,DyL(x,v)) is a local C*~! diffeomorphism
(Definition 2) with its inverse H = £ (x,p) = (x, DpH(x,p)). Let us define

We = {(x,v) € T* x R™ : Ho L{x,v) € (c(0) —&,c(0) +¢) |

then it is an open neighborhood of M,, thus by the local attractor property there exists
Te > 0 such that for any t > T, there exists s € [0, t] such that
(v(3),7(3)) € W, — L(v(3),7(5) € (c(0) —¢,c(0) +e).
By conservation of energy we obtain
Ho L(y(s),v(s)) € (c(0) —¢,c(0) +¢).
for all s € [0, t], which implies that H(x, Du(x, t) € (c(0) —¢,c(0) + ¢). O
Proof of Theorem 6.1. Without loss of generality, let us assume c(0) = 0 by adding a con-
stant to H. Let v € C(T™) solves (6.2) then V(x,t) = v(x) — c(0)t = v(x) solves (6.1). Let
C be large enough so that v(x) —C < g(x) < v(x)+ C for x € T". Run the Hamiltonian
flows, i.e., by comparison principle
v(x) —C <u(x,t) <v(x)+C for all (x,t) € T™ x (0, c0).
We also have a priori estimate |[ut||co(pn) + [|[Duf/ieo(rn) < C. In the space C(T"), the
family {u(-,t) : t > 0} is uniformly equi-continuous (following from |[u[[{«(1n) < C), thus
by Arzela—Ascoli Theorem we can find a subsequence t;, — co and a function u,, € C(T™)
such that
Ti g(x) = ulx, ty) = Uso(x) uniformly as ty — co.

Here Tig(x) = u(x, t) is the solution map of (6.1). We now show u, solves (6.2).

1. Us inherits the subsolution property beautifully. Let ¢ > 0, from Lemma 6.2 we

find T; > 0 such that for t; > T
H(x, Du(x, ty)) <c(0)+e=¢ fora.e.x e T
By convexity (and Jensen’s result),
H(x, Du(x, t)) <c(0)+e=c¢ for x € T" in the viscosity sense.

Let ty — oo and use stability of viscosity solution we obtain that, in the viscosity
sense H(x,Dux(x)) < ¢ in T™ and thus uy is a subsolution to (6.2) by sending
e — 0.
2. The supersolution property is trickier. Using the fact that u(:) is a subsolution
to (6.2), we have Tiu(+) is a subsolution to
wi(x,t) + H(x, Dw(x,t)) =0 (x,t) e R" x (0,T), 63)
W06, 0) = tsolx) (x,1) € R™ x (0} 7
while 1i(x, t) = us(x) is a viscosity solution, hence by comparison principle
Trueo (1) < Uoo() = Ts+tuoo(') < Tsuoo()
and thus s — Tsue(-) is non-increasing for s > 0. We claim that

Tiueo (1) = U (+) forallt > 0. (6.4)
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Assume that sy =ty — tx = 0o we show T, u(-) = Us(-) uniformly as s, — oo.
The ingredients are Ty, g(-) = us(-) and the contraction property

[Teg1(-) = Teg2()l[Loo(rny < (191 — 2llLoo(Tn)-
We have Ty, , = Ts, o Ty, thus

[ITsic oo = Uoollree < [[Tsy oo = Tty 1 9lloo +[ Tty 9 — UoollLe — 0

-~
[[ttoo—Tey gl Loo

as tx — oo. Together with the fact that s — T,u, is non-decreasing, we have
TsUoo () = Uso(-) uniformly as s — oo and further that (6.4) holds, hence uy is a
solution to the ergodic problem (6.2).

Finally, write t = s + t, we have

||Tt9 _uoo(X)HL‘X’ < ||Ts+tk9 - Tsuoo(X)HLOO +HTsuoo _uooHI_OO — 0

[Te, g9—Uooll o0

ast — oo. O

Remark 37. Some open questions:

1. Can we quantify T, in the attractor property?
2. Rate of convergence of u(x,t) = us(x) —c(0)t?

Some other proofs are available ([8, 19], ...).

LITERATURE

Beside the one we cited earlier, the materials follow also some of the following sources
[1,2,3,4,6,7,9, 10, 11, 12, 14, 15, 16]. The rate of convergence for homogenization using
the tools developed from rotation vector is studied in [17]. The author will update more
references in the future.
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