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Abstract

This is an expository note based on the materials from the book ”Introduction to Harmonic Analy-
sis” by Katznelson.

Contents

1 Fourier series 1
1.1 Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Summability kernels and homogeneous Banach spaces on T . . . . . . . . . . . . . . . . . 4
1.3 Point-wise convergence of σn(f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The order of magnitude of Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Fourier coefficients of linear functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Fourier transform 21
2.1 Fourier-Stieltjes transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Fourier transforms of distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Pseudo-measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Almost periodic functions on the real line 42
3.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Mean value of almost periodic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Pre-Hilbert space structure on AP(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Some sufficient conditions for functions to be almost-periodic . . . . . . . . . . . . . . . . 55

4 Kronecker’s theorem 58

1 Fourier series

• We denote by R the additive group of real numbers and by Z the subgroup consisting of the
integers. The group T is quotient group R/2πZ.

• There is an obvious identification between functions on T and 2π-periodic functions on R, which
allows the notions of continuity, differentiability, etc. for functions on T .

• The Lebesgue measure on T is the defined in the same manner, which is roughly understood
as the restriction of the Lebesgue measure to [0,2π), and a function f is integrable on T if the
corresponding 2π-periodic function, which we denote again by f , is integrable on [0,2π) and we
set ∫

T

f (t) dt =
∫ 2π

0
f (x) dx.
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• An important property of dt on T is its translation invariance, that is, for all t0 ∈ T and f defined
on T we have ∫

T

f (t − t0) dt =
∫
T

f (t) dt.

——————————————————

1.1 Fourier coefficients

1. We denote bt L1(T ) the space of all (equivalent classes of) complex-valued, Lebesgue integrable
functions on T . For f ∈ L1(T ), we put

‖f ‖L1 =
1

2π

∫
T

f (t) dt.

The total mass of dt on T equal to 2π and thus (many of) our formula(s) would be simpler if we
normalized dt to have total mass 1, but we don’t do that in order to avoid confusion, so we have
pay by having the factor 1/2π in front of every integral. It is well known that L1(T ) with ‖ · ‖L1(T )
is a Banach space.

2. A ”trigonometric polynomial” on T is an expression of the form

P ∼
m∑

n=−m
ane

int where m ∈N. (1)

• The number n ∈N above are called the frequencies of P .

• The largest integer n such that |an|+ |a−n| , 0 is called the ”the degree” of P .

Since (1) is finite sum, it represents a function, which we denote again by P , defined for each t ∈ T
by

P (t) =
m∑

n=−m
ane

int where m ∈N, t ∈ T . (2)

3. (Fourier coefficients) Let P be defined by (2), we can compute the coefficients an by the formula

an =
1

2π

∫
T

P (t)e−int dt.

 1
2π

∫
T

eijt dt =

1 if j = 0,
0 if j , 0.

 (3)

We shall consider trigonometric polynomials as both formal expressions and functions.

4. A trigonometric series on T is an expression of the form

S ∼
∞∑

n=−∞
ane

int with the conjugate series is S̃ ∼
∞∑

n=−∞
(−isgn(n)an)e−int (4)

where sgn(n) = 0 if n = 0 and sgn(n) = n/ |n| otherwise.

5. Let f ∈ L1(T ), motivated from (3) we define the nth Fourier coefficient of f by

F[f ](n) = f̂ (n) =
1

2π

∫
T

f (t)e−int dt for n ∈Z. (5)

The Fourier series S[f ] of a function f ∈ L1(T ) is the trigonometric series

S[f ] ∼
∞∑

n=−∞
f̂ (n)eint .

The series conjugate to S[f ] will be denoted by S̃[f ] and referred to as the conjugate Fourier series
of f . We say a trigonometric series is a Fourier series if it is the Fourier series of some f ∈ L1(T ). It
is easy to see that for f ,g ∈ L1(T ) then we have the basic properties as following:

2



(a) (�f + g)(n) = f̂ (n) + ĝ(n), and for any complex number α then (α̂f )(n) = αf̂ (n).

(b) If f is the conjugate of f , i.e., f (t) = f (t) then (̂f )(n) = f̂ (−n).

(c) Denote fs(t) = (τsf ) (t) = f (t − s) for s ∈ T , then f̂s(n) = f̂ (n)e−ins.

(d) |f̂ (n)| ≤ 1
2π

∫
T
|f (t)| dt = ‖f ‖L1(T ). Thus if fj −→ f in L1(T ) then f̂j (n) −→ f̂ (n) uniformly.

6. A relation between Fourier coefficient of f ∈ L1(T ) and its anti-derivative is given by:

Theorem 1.1. If f ∈ L1(T ) with f̂ (0) = 0, then the function F(t) =
∫ t

0 f (s) ds is continuous, 2π-periodic

and F̂(n) = 1
in f̂ (n) for n , 0.

Proof. It is obvious that F is (absolutely) continuous. The periodicity of F follows from

F(t + 2π)−F(t) =
∫ t+2π

t
f (s) ds = 2πf̂ (0) = 0.

For the second part, we fist assume f ∈ C(T )∩L1(T ), then F ∈ C1(T ) by the fundamental theorem
of calculus and hence we can use integration by part to get

F̂(n) =
1

2π

∫ 2π

0
F(t)e−int dt =

1
in
f̂ (n).

Now if f ∈ L1(T ), we can find fj ∈ C(T ) such that ‖fj − f ‖L1(T ) −→ 0, then clearly

1
2π

∫ 2π

0
|Fj (t)−F(t)| dt ≤

∫ t

0
|fj (s)− f (s)| ds ≤ 2π‖fj − f ‖L1(T ) −→ 0

thus F̂j (n) −→ F̂(n) uniformly, so F̂(n) = lim
j−→∞

1
in
f̂j (n) =

1
in
f̂ (n) since f̂j (n) −→ f̂ (n) uniformly.

7. (Convolution) Before going to define the convolution on T , we need the following theorem.

Theorem 1.2. Let f ,g ∈ L1(T ), then for a.e. t ∈ T the function s 7−→ f (t− s)g(s) is integrable on T , and
if we define

h(t) =
1

2π

∫
T

f (t − s)g(s) ds =⇒ h ∈ L1(T ) with ‖h‖L1(T ) ≤ ‖f ‖L1(T )‖g‖L1(T )

and ĥ(n) = f̂ (n)ĝ(n) for all n ∈Z.

Proof. The function F : (t, s) 7−→ f (t − s)g(s) is clearly measurable as a function of (t, s), we have

1
2π

∫ 2π

0

(
1

2π

∫ 2π

0
|f (t − s)g(s)| dt

)
ds =

1
2π

∫ 2π

0
|g(s)| · ‖f ‖L1(T ) ds = ‖f ‖L1(T )‖g‖L1(T ).

By Tonelli’s theorem, F(t, s) ∈ L1(T ×T ), and hence by Fubini’s theorem we have s 7−→ f (t− s)g(s) is
integrable as a function of s for a.e. t ∈ T , and the order of integration can be switched as

‖h‖L1(T )
1

2π

∫ 2π

0
|h(t)| dt ≤ 1

2π

∫ 2π

0

(
1

2π

∫ 2π

0
|f (t − s)g(s)| ds

)
dt

=
1

2π

∫ 2π

0

(
1

2π

∫ 2π

0
|f (t − s)g(s)| dt

)
ds ≤ ‖f ‖L1(T )‖g‖L1(T ).

Finally we have

ĥ(n) =
1

2π

∫ 2π

0
h(t)e−int dt =

1
2π

∫ 2π

0

(
1

2π

∫ 2π

0
f (t − s)g(s) ds

)
e−int dt

=
1

2π

∫ 2π

0

(
1

2π

∫ 2π

0
f (t − s)e−in(t−s) dt

)
g(s)e−ins ds = f̂ (n)ĝ(n)

where all the change in the order of integration is justified by Fubini’s theorem.
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From that, we define the convolution f ∗g of two function f ,g ∈ L1(T ) to be another L1(T ) function:

(f ∗ g)(t) =
1

2π

∫ 2π

0
f (t − s)g(s) ds has f̂ ∗ g(n) = f̂ (n)ĝ(n).

Theorem 1.3. The convolution operation in L1(T ) is commutative, associative, and distributive (with
respect to the addition).

Proof. For f ,g ∈ L1(T ) by changing of variable we obtain

(f ∗ g)(t) =
1

2π

∫ 2π

0
f (t − s)g(s) ds =

1
2π

∫ t

t−2π
g(t −u)f (u) du =

1
2π

∫ 2π

0
g(t −u)f (u) du = (g ∗ f )(t).

Now if f ,g,h ∈ L1(T ) changing of variable we have

(
(f ∗ g) ∗ h

)
(t) =

1
2π

∫ 2π

0

(
1

2π

∫ 2π

0
f (t − s −u)g(u) du

)
h(s) ds

(w = s+u) =
1

2π

∫ 2π

0

(
1

2π

∫ 2π

0
f (t −w)g(w − s) dw

)
h(s) ds

=
1

2π

∫ 2π

0
f (t −w)

(
1

2π

∫ 2π

0
g(w − s)h(s) ds

)
dw =

(
f ∗ (g ∗ h)

)
(t).

Finally the distribution law (f + g) ∗ h = f ∗ h+ g ∗ h is obvious from the definition.

Theorem 1.4. Assume f ∈ L1(T ) and ϕ(t) = eint for some n ∈N, then we have (f ∗ϕ)(t) = f̂ (n)eint .

Proof. Since f ,ϕ ∈ L1(T ) we have f ∗ϕ ∈ L1(R), and (f ∗ϕ)(t) = 1
2π

∫ 2π
0 f (t − s)eins ds = f̂ (n)eint .

As a corollary, if f ∈ L1(T ) then

P (t) =
m∑
−m
ane

int =⇒ (P ∗ f )(t) =
m∑
−m
anf̂ (n)eint .

1.2 Summability kernels and homogeneous Banach spaces on T

1. We shall see that f̂ determines f uniquely and we show how we can find f if we know f̂ . First of
all let’s recall the two important properties of L1(T ), that are

(H1) (Translation-invariant) If f ∈ L1(T ) and s ∈ T then t −→ fs(t) ∈ L1(T ) and ‖fs‖L1(T ) = ‖f ‖L1(T ).

(H2) (Continuity of translation w.r.t L1-norm) For f ∈ L1(T ) and s ∈ T then lims−→0 ‖fs−f ‖L1(T ) = 0.

The property (H2) follows from the fact that it is true for continuous functions, and by a density
argument (continuous functions are dense in L1(T )) we obtain the result.

2. (Integration of vector-valued functions) Consider a Banach space (X,‖ · ‖) and F be a X-valued
function, defined and continuous on a compact interval [a,b] ⊂ R. We define the (Riemann) inte-
gral of F on [a,b] in a manner completely analogous to that used in the case of numerical functions,
namely for any partition

PN = {x0 = a < x1 < . . . < xN+1 = b} we define SPN =
N∑
j=0

(
xj+1 − xj

)
F(xj ).

The integral is defined by ∫ b

a
F(x) dx = lim

N−→∞
SPN
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where the limit is taken in X-norm, and the subdivision {xj : j = 0,1, . . . ,N + 1} becomes finer
and finer, i.e., as N −→ ∞ we have max1≤j≤N |xj+1 − xj | −→ 0. The existence of such limit follows
by a simple argument , by constructing a sequence of partial sums which is Cauchy (taking the
common refinement of two partitions).

3. A ”summability kernel” is a sequence {ζn} of continuous 2π-periodic functions satisfying:

(S1) 1
2π

∫ 2π
0 ζn(t) dt = 1.

(S2) supn∈N ‖ζn‖L1(T ) ≤ C.

(S3) For all 0 < δ < π we have limn−→∞
∫ 2π−δ
δ

|ζn(t)| dt = 0.

A positive summability kernel is one such that ζn(t) ≥ 0 for all t and n. We consider also families
ζr depending on a continuous parameter r instead of the discrete n. We state the following lemma
in a general setting with vector-valued functions.

Lemma 1.5. Let (X,‖·‖) is a Banach space andϕ : T −→ (X,‖·‖) is continuous, then for any summability
kernel {ζn} we have

lim
n−→∞

1
2π

∫ 2π

0
ζn(t)ϕ(t) dt = ϕ(0).

Proof. Since ϕ is continuous on compact set T , it is norm-bounded ‖ϕ(t)‖ ≤ C for all t ∈ T . For
ε > 0, there exists δ > 0 such that if t ∈ T and |t| < δ then |ϕ(t)−ϕ(0)| < ε, then we have

1
2π

∫ 2π

0
ζn(t)

(
ϕ(t)−ϕ(0)

)
dt =

1
2π

∫
{t∈T :|t|<δ}

ζn(t)
(
ϕ(t)−ϕ(0)

)
dt +

1
2π

∫ 2π−δ

δ
ζn(t)

(
ϕ(t)−ϕ(0)

)
dt.

On the other hand ∣∣∣∣∣∣ 1
2π

∫
{t∈T :|t|<δ}

ζn(t)
(
ϕ(t)−ϕ(0)

)
dt

∣∣∣∣∣∣ ≤ 2ε

and by (S3) we have ∣∣∣∣∣∣ 1
2π

∫ 2π−δ

δ
ζn(t)

(
ϕ(t)−ϕ(0)

)
dt

∣∣∣∣∣∣ ≤ Cπ
∫ 2π−δ

δ
|ζn(t)| dt

as n −→∞, which concludes our result.

As a consequence we have

Theorem 1.6. Let f ∈ L1(T ) and {ζn} be a summability kernel, then

f = lim
n−→∞

∫ 2π

0
ζn(t)ft(·) dt in L1(T ).

Proof. Let (X,‖ · ‖) =
(
L1(T ),‖ · ‖L1(T )

)
and ϕ(s) = fs(·) for s ∈ T , the result follows from lemma

1.5.

The vector-valued integral above can be understood in the usual sense, by the following lemma.

Lemma 1.7. Let ζ ∈ C(T ) (we can relax this condition) and f ∈ L1(T ) then

1
2π

∫ 2π

0
ζ(t)ft(·) dt ≡ (ζ ∗ f )(·)

as functions in L1(T ), where on the left hand side we have the vector-valued integral.

5



Proof 1. Assume first that f ∈ C(T ), we have

1
2π

∫ 2π

0
ζ(t)ft(·) dt = lim

{sj }−→0

1
2π

∑
j

(sj+1 − sj )ζ(sj )fsj

where the limit is taken in L1(T )-norm and {sj } −→ 0 means the subdivision {sj } of [0,2π) becomes
finer and finer. Note that if f ∈ C(T ) then by Riemann sum approximation as usual (which holds
for continuous functions, that’s why we need ζ ∈ C(T )) we have

(ζ ∗ f )(t) =
1

2π

∫ 2π

0
ζ(s)f (t − s) ds = lim

{sj }−→0

1
2π

∑
j

(sj+1 − sj )ζ(sj )f (t − sj )

uniformly for t ∈ T , thus the lemma is proved if f ∈ C(T ). The case f ∈ L1(T ) follows by a density
argument since C(T ) is dense in L1(T ) under the L1-norm.

Proof 2. The proof is quite simple if we use some measure theory facts instead of approximating
the integral in the Riemann sense. For a continuous function ϕ : [a,b] −→ (X,‖ · ‖), then for any
Λ ∈ X∗ we have

Λ

(∫ b

a
ϕ(t) dt

)
=

∫ b

a
Λ ◦ϕ(t) dt

and the fact that if Λ(x) = Λ(y) for all Λ ∈ X∗ implies x ≡ y, based on a simple application of
Hahn-Banach theorem. For Λ ∈ L1(T )∗, since (L1)∗ = L∞, there exists a unique g ∈ L∞(T ) such that
Λ(ϕ) =

∫ 2π
0 g(t)ϕ(t) dt for all ϕ ∈ L1(T ), thus

Λ

(
1

2π

∫ 2π

0
ζ(t)ft(·) dt

)
=

1
2π

∫ 2π

0
ζ(t)Λ

(
f (· − t)

)
dt

=
1

2π

∫ 2π

0
ζ(t)

(∫ 2π

0
g(u)f (u − t) du

)
dt

(Fubini’s theorem) =
1

2π

∫ 2π

0
g(u)

(∫ 2π

0
ζ(t)f (u − t) dt

)
du =

1
2π

∫ 2π

0
g(u)

(
ζ ∗ f

)
(u) du = Λ(ζ ∗ f ).

Thus the proof is complete, note that in this way we don’t need to use the continuity of ζ.

Using this lemma, for any summability kernel {ζn} we have ζn ∗ f −→ f in L1(T ).

4. (Fejer’s kernel) The Fejer’s kernel is defined by

Kn(t) =
n∑

j=−n

(
1−

|j |
n+ 1

)
eijt .

It is clear that ‖Kn‖L1(T ) = 1, the first and the third properties of a summability kernel is verified

using the formula sin(a)−sin(b) = 2cos
(
a+b

2

)
sin

(
a−b

2

)
. Indeed, let Dn(t) =

∑n
j=−n e

ijt , which is called
”Dirichlet kernel” (not a summability kernel), we have

Dn(t) =
n∑

j=−n
eijt = 1 + 2

n∑
j=1

cos(jt) = 1 +

(∑n
j=1

[
sin

(
j + 1

2

)
t − sin

(
j − 1

2

)
t
])(

sin t
2

) =
sin

(
n+ 1

2

)
t

sin t
2

.

Thus

(n+ 1)Kn(t) =
n∑

j=−n

(
n+ 1− |j |

)
eijt =

n∑
k=0

Dk(t) =
(
sin

t
2

)−1
Im

e it2 n∑
k=0

eikt
 =

(
sin

t
2

)−1
Im

[
e
it
2

1− ei(n+1)t

1− eit

]
.

It is easy to compute the last sum at get

Kn(t) =
1

n+ 1

(
sin

t
2

)−1
Im

[
1− ei(n+1)t

e−
it
2 − e

it
2

]
=

1
n+ 1

1− cos(n+ 1) t

2sin2
(
t
2

)  =
1

n+ 1

sin
(
n+1

2

)
t

sin t
2


2

.
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We adhere to the generally used notation and write σn(f ) = Kn ∗ f and σn(f )(t) = (Kn ∗ f )(t). It is
clear from theorem 1.4 that

σn(f )(t) = (Kn ∗ f )(t) =
n∑

j=−n

(
1−

|j |
n+ 1

)
f̂ (j)eijt . (6)

We already knew that σn(f ) −→ f in L1(T ) for every f ∈ L1(T ). Note that σn(f ) is a trigonometric
polynomial, thus from this fact we deduce that trigonometric polynomials are dense in L1(T ).

Theorem 1.8 (Uniqueness). If f ∈ L1(T ) has f̂ (n) = 0 for all n ∈Z then f ≡ 0.

Proof. It is obvious from (6) and the fact that σn(f ) −→ f in L1(T ).

Theorem 1.9 (Riemann-Lebesgue lemma). If f ∈ L1(T ) then lim|n|−→∞ f̂ (n) = 0. Moreover, if K is a
compact subset of L1(T ) then lim|n|−→∞

(
supf ∈K |f̂ (n)|

)
= 0.

Proof. Let P be a trigonometric polynomial with ‖f − P ‖L1(T ) < ε, then for n ∈ Z with |n| > deg(P )

we have P̂ (n) = 0, hence |f̂ (n)| = |(�f − P )(n)| ≤ ‖f −P ‖L1(T ) < ε. If K is a compact subset of L1(T ) and
ε > 0, there exists a finite number of trigonometric polynomials P1, . . . , Pm such that for any f ∈ K
there exists j ∈ {1, . . . ,m} such that ‖f − Pj‖L1(T ) < ε. The argument follows similarly as before with
|n| >max{deg Pj : j = 1,2, . . . ,m}.

In summary, {Kn} is a positive summability kernel which possess the following properties:

lim
n−→∞

(
sup

δ<t<2π−δ
Kn(t)

)
= 0 for any 0 < δ < π (F1)

and
Kn(t) = Kn(−t). (F2)

5. For f ∈ L1(T ) we denote by Sn(f ) the n partial sum of S[f ], that is

Sn(f )(t) = Sn(f , t) =
n∑

j=−n
f̂ (j)eijt , i.e., Sn(f ) = Dn ∗ f .

We can see that

σn(f ) =
1

n+ 1

n∑
k=0

Sn(f ),

which are the Cesàro means of Sn(f ). Cesàro mean theorem says that if Sn(f ) −→ g in L1(T ) as
n −→∞ then σn(f ) −→ g in L1(T ) as n −→∞ as well, which follows that f = g. Since the Dirichlet
kernel {Dn} doesn’t satisfy (S2) or (S3), this explains why the problem of convergence for Fourier
series is so much harder than the problem of summability.

6. (Homogeneous Banach spaces on T ) A homogeneous Banach space on T is a linear subspace
B ⊂ L1(T ) having a norm ‖ · ‖B ≥ ‖ · ‖L1 under which it is a Banach space, and having the following
properties:

(H1) (Translation-invariant) f ∈ B and s ∈ T implies fs ∈ B and ‖fs‖B = ‖f ‖B.

(H2) (Continuity of translation) For all f ∈ B and s, t ∈ T we have limt−→s ‖ft − fs‖B = 0.

If we have a space B satisfying (H1) and we want to show it satisfies (H2) as well, it is sufficient to
check the continuity of the translation on a dense subset of B.

Lemma 1.10. Let B ⊂ L1(T ) be a Banach space satisfying (H1). Denote by Bc the set of all f ∈ B such
that s 7−→ fs is a continuous B-valued function, then Bc is a closed subspace of B.
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Proof. Assume f ∈ Bc where the closure is taken in (B,‖ · ‖B). Given ε > 0, there exists g ∈ Bc such
that ‖f − g‖B < ε, then

‖fs − f ‖B ≤ ‖fs − gs‖B + ‖gs − g‖B + ‖g − f ‖B = 2‖f − g‖B + ‖gs − g‖B < 2ε+ ‖gs − g‖B
which can be made less then 3ε if we choose s small enough.

Examples of homogeneous Banach spaces on T ,

(a) C(T )-the space of all continuous 2π-periodic functions with the norm

‖f ‖u = ‖f ‖∞ = max
t∈T
|f (t)|.

(b) Cn(T )-the subspace of C(T ) of all n-times continuously differentiable functions (n ∈N) with
the norm

‖f ‖Cn(T ) =
n∑
k=0

1
k!

max
t∈T
|f (k)(t)|.

(c) Lp(T ), 1 ≤ p <∞-the subspace of L1(T ) consisting of all the functions f for which
∫
T
|f (t)|p dt

is finite with the norm

‖f ‖Lp(T ) =
(

1
2π

∫ 2π

0
|f (t)|p dt

) 1
p

.

Checking (H2) for (a),(b) is equivalent to the fact that continuous functions on T are uniformly
continuous, while checking (H2) for (c) is similar to the L1-case. Now we extend some results to
the homogeneous Banach spaces on T .

Theorem 1.11. Let B be a homogeneous Banach space on T , let f ∈ B and {ζn} be a summability kernel,
then ‖ζn ∗ f − f ‖B −→ 0 as n −→∞.

Proof. By definition we have

lim
{sj }−→0

∥∥∥∥∥∥∥∥ 1
2π

∫ 2π

0
ζ(t)ft(·) dt −

1
2π

∑
j

(sj+1 − sj )ζ(sj )fsj

∥∥∥∥∥∥∥∥
B

where the limit is taken in B-norm and {sj } −→ 0 means the subdivision {sj } of [0,2π) becomes
finer and finer. Since ‖ · ‖L1 ≤ ‖ · ‖B, it happens that

1
2π

∫ 2π

0
ζ(t)ft(·) dt︸                  ︷︷                  ︸

B−valued

≡ 1
2π

∫ 2π

0
ζ(t)ft(·) dt︸                  ︷︷                  ︸

L1(T )−valued

.

By lemma 1.7 they all equal to ζ ∗ f as a function in B. The conclusion now follows from lemma
1.5 with ϕ(s) = fs = f (· − s).

Theorem 1.12. Let B be a homogeneous Banach space on T , then the trigonometric polynomials in B
are everywhere dense.

Proof. For every f ∈ Bwe have σn(f ) −→ f in (B,‖·‖B), and since σn(f ) is a trigonometric polynomial
in B, we have the conclusion.

7. (de la Vallée Poussin kernel) The de la Vallée Poussin kernel is defined by

Vn(t) = 2K2n+1(t)−Kn(t).

It is obvious that {Vn} is a summability kernel from the fact that {Kn} is a summability kernel, it is
a polynomial of degree 2n+ 1 having the property that V̂n(j) = 1 if |j | ≤ n+ 1. It is therefore useful
when we want to approximate a function f by polynomials having the same Fourier coefficients
as f over prescribed intervals (namely Vn ∗ f ).
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8. (Poisson kernel) For 0 < r < 1 out

Pr (t) =
∑
j∈Z

r |j |eijt = 1 + 2
∞∑
j=1

rj cos(jt) =
1− r2

1− 2r cos t + r2 .

1.3 Point-wise convergence of σn(f )

1. We have already known that if f ∈ L1(T ) then σn(f ) −→ f in the topology of any homogeneous
Banach space that contains f . In particular if f ∈ C(T ) then σn(f ) −→ f uniformly. In case f is not
continuous, we have to reexamine the integrals defining σn(f ) for point-wise convergence.

Theorem 1.13 (Fejér). Let f ∈ L1(T ).

(a) Assume (Fejér condition)

lim
h−→0

(
f (t0 + h) + f (t0 − h)

)
exists, which can be ±∞

then
lim
n−→∞

σn(f )(t0) =
1
2

lim
h−→0

(
f (t0 + h) + f (t0 − h)

)
.

In particular, if t0 is a point of continuity of f then σn(f )(t0) −→ f (t0).

(b) If every point of a closed interval I is a point of continuity for f , σn(f )(t) −→ f (t) uniformly on I .

(c) If for a.e. t, m ≤ f (t) then m ≤ σn(f )(t). If for a.e. t, f (t) ≤M, then σn(f )(t) ≤M.

Proof. We assume first that f̃ (t0) = limh−→0
f (t0+h)+f (t0−h)

2 is finite. From (F2) we have

σn(f )(t0)− f̃ (t0) =
1

2π

∫
T

Kn(s)
(
f (t0 − s)− f̃ (t0)

)
ds

=
1
π

∫
[0,δ]∪[δ,π)

Kn(s)
(
f (t0 + s) + f (t0 − s)

2
− f̃ (t0)

)
ds.

Given ε > 0, we choose δ > 0 such that |h| < δ implies
∣∣∣∣ f (t0+h)+f (t0−h)

2 − f̃ (t0)
∣∣∣∣ < ε, then we have

1
π

∫ δ

0
Kn(s)

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds < ε. (7)

Now from (F1) we can choose n0 ∈N such that n > n0 implies supδ<t<2π−δKn(t) < ε, which implies

1
π

∫ π

δ
Kn(s)

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds < ε‖f − f̃ (t0)‖L1(T ). (8)

From (7) and (8) we deduce that∣∣∣σn(f )− f̃ (t0)
∣∣∣ < ε+ ε‖f − f̃ (t0)‖L1(T )

which proves part (a) when f̃ (t0) is finite. It is easy to see that the same argument holds when
f̃ (x0) = ±∞. For part (b), if f is continuous at every points in a closed interval I then f is uniformly
continuous on I , then we can modify the proof above as given ε > 0, there exists δ > 0 such that

|h| < δ =⇒ sup
t∈I

∣∣∣∣∣ f (t − h) + f (t + h)
2

− f̃ (t)
∣∣∣∣∣ < ε

and the argument above can be applied again to get (b). Part (c) follows from the fact that Kn is
positive and ‖Kn‖L1(T ) = 1, indeed if m ≤ f a.e. then

σn(f )(t)−m =
1

2π

∫
T

Kn(s)
(
f (t − s)−m

)
ds ≥ 0

and similarly for the case f ≤M.
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2. As corollary, if f ∈ L1(T ) is continuous at t0 and if the Fourier series of f converges at t0 then its
sum is f (t0).

3. The theorem still valid if we replace σn(f ) by ζn ∗ f where {ζn} is a summability kernel which sat-
isfies two properties (F1) and (F2). In particular, the Possion kernel satisfies all of these require-
ments and the statement of Fejér theorem remains valid if we replace σn(f ) by the Abel means of
the Fourier series of f ,

4. The Fejér’s condition

f̃ (t0) =
1
2

lim
h−→0

(
f (t0 + h) + f (t0 − h)

)
(9)

implies that

lim
h−→0

1
h

∫ h

0

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds = 0. (10)

The condition (10) is far less restrictive and more natural for summable functions, since it doesn’t
change if we modify f on a set of measure zero.

Theorem 1.14 (Lebesgue). If (10) holds then σn(f )(t0) −→ f (t0). In particular σn(f )(t) −→ f (t) a.e.

Proof. We have

σn(f )(t0)− f̃ (t0) =
1
π

∫
[0,δ]∪[δ,π)

Kn(s)
(
f (t0 + s) + f (t0 − s)

2
− f̃ (t0)

)
ds.

Recall that

Kn(s) =
1

n+ 1

(
sin(n+ 1) s2

sin s
2

)2

≤min
{
n+ 1,

π2

(n+ 1)s2

}
where we have used sin x

2 ≥
x
π for 0 ≤ x ≤ π. From that we have

1
π

∫ π

δ
Kn(s)

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds ≤min

{
n+ 1,

π2

(n+ 1)δ2

} ‖f − f̃ (t0)‖L1(T )

π

which converges to 0 if (n+ 1)δ2 −→ +∞ as n −→∞. Let’s pick δ = n−1/4, we have left to show that

lim
n−→∞

1
π

∫ n−1/4

0
Kn(s)

(
f (t0 + s) + f (t0 − s)

2
− f̃ (t0)

)
ds = 0. (11)

Let’s define for simplicity the function

Φ(h) =
∫ h

0

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds then lim

h−→0

Φ(h)
h

= 0.

For given ε > 0, there exists n0 ∈N such that Φ(s) < εs for 0 < s < n−1/4 for all n ≥ n0. Also

1
π

∫ n−1

0
Kn(s)

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds ≤ n+ 1

π

∫ 1
n

0

∣∣∣∣∣ f (t0 + h) + f (t0 − h)
2

− f̃ (t0)
∣∣∣∣∣ ds −→ 0

as n −→∞ by (10). Now

1
π

∫ n−1/4

n−1
Kn(s)

∣∣∣∣∣ f (t0 + s) + f (t0 − s)
2

− f̃ (t0)
∣∣∣∣∣ ds ≤ π

n+ 1

∫ n−1/4

n−1

∣∣∣∣∣ f (t0 + h) + f (t0 − h)
2

− f̃ (t0)
∣∣∣∣∣ 1
s2
ds

Using a generalized version of the integration by parts formula we obtain

π
n+ 1

∫ n−1/4

n−1

∣∣∣∣∣ f (t0 + h) + f (t0 − h)
2

− f̃ (t0)
∣∣∣∣∣ 1
s2
ds =

π
n+ 1

(
Φ(s)
s2

) ∣∣∣∣∣∣
s=n−1/4

s=n−1

+
2π
n+ 1

∫ n−1/4

n−1

Φ(s)
s3

ds

≤ 2πε
( n
n+ 1

)
+

2πε
n+ 1

∫ n−1/4

n−1

1
s2
ds < 6πε.

The proof is complete.
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As a consequence, if the Fourier series of f ∈ L1(T ) converges on a set E of positive measure, its
sum coincides with f almost everywhere on E. In particular, if a Fourier series converges to zero
almost everywhere, all its coefficients must vanish.

1.4 The order of magnitude of Fourier coefficients

Two things we have known about the size of Fourier coefficients are if f ∈ L1(T ) then ‖f̂ ‖L∞(T ) ≤ ‖f̂ ‖L1(T )

and the Riemann-Lebesgue lemma: lim|n|−→∞ f̂ (n) = 0.

1. Can the Riemann-Lebesgue lemma be improved to provide a certain rate of vanishing of f̂ (n) as
|n| −→∞? The answer is no.

Theorem 1.15. Let {an}n∈Z be a even sequence of non-negative numbers tending to zero at infinity.
Assume that for n > 0 we have

an−1 + an+1 − 2an ≥ 0. (12)

Then there exists a non-negative f ∈ L1(T ) such that f̂ (n) = an.

2. A basic difference between sine-series and cosine-series is given by:

Theorem 1.16. If f ∈ L1(T ) and f̂ (|n|) = −f̂ (−|n|) ≥ 0 for all n ∈Z then

∞∑
n=1

1
n
f̂ (n) <∞.

Proof. Assume f̂ (0) = 0, let F(t) =
∫ t

0 f (s) ds, by theorem 1.1 we have F ∈ C(T ) with F̂(n) = 1
in f̂ (n)

for n , 0. Since F is continuous, we can apply Fejer’s theorem 1.13 to obtain

lim
m−→∞

σm(F)(0) = lim
m−→∞

m∑
−m

(
1− n

m+ 1

) 1
in
f̂ (n) = F(0).

I.e.,

lim
m−→∞

2
m∑
n=1

(
1− n

m+ 1

) 1
n
f̂ (n) = i

(
F(0)− F̂(0)

)
= −iF̂(0).

Since 1
n f̂ (n) ≥ 0 for n = 1,2, . . . the proof is complete.

3. We now turn to some simple results about the order of magnitude of Fourier coefficients of func-
tions satisfying various smoothness conditions.

Theorem 1.17. If f ∈ L1(T ) is absolutely continuous, then f̂ (n) = o
(

1
n

)
as |n| −→∞.

Proof. f ′ exists and f ′ ∈ L1(T ) with f̂ (n) = 1
in f̂
′(n), and thus f̂ (n) = o

(
1
n

)
since f̂ ′(n) −→ 0 as

|n| −→∞ by Riemann-Lebesgue lemma.

Similarly, if f is k-times differentiable and f (k−1) is absolutely continuous then f̂ (n) = o(n−k) as
|n| −→∞. Similarly, we have:

Theorem 1.18. If f is k-times differentiable and f (k−1) is absolutely continuous then

|f̂ (n)| ≤ min
0≤j≤k

‖f j‖L1(T )

|n|j

In particular, if f ∈ C∞(T ) then

|f̂ (n)| ≤min
0≤j

‖f j‖L1(T )

|n|j

11



1.5 Fourier coefficients of linear functionals

1. Let B be a homogeneous Banach space on T and let’s assume that eint ∈ B for all n ∈Z, we denote
by B∗ be the dual space of B. The Fourier coefficients of a functional µ ∈ B∗ are defined by

µ̂(n) = µ(eint) = 〈eint ,µ〉, n ∈Z. (13)

The Fourier series of µ is defined by

S[µ] ∼
∞∑

n=−∞
µ̂(n)eint .

It is clear that |µ̂(n)| ≤ ‖µ‖B∗‖ein(·)‖B.

2. For 1 ≤ p < ∞, recall that (Lp)∗ = Lq for 1 < q ≤ ∞ where 1
p + 1

q = 1. A function µ ∈ Lq can be
identified with the linear function

µ : Lp 7−→ C map f 7−→ µ(f ) = 〈f ,µ〉Lq ,Lp =
1

2π

∫
T

f (x)µ(x) dx.

The definition (13) reads

µ̂(n) = 〈eint ,µ〉Lq ,Lp =
1

2π

∫
T

eintµ(x) dt =
1

2π

∫
T

µ(x)e−int dt

which is consistent with our previous definition of Fourier coefficient for a function.

3. (Parseval’s formula)

Theorem 1.19 (Parseval’s formula). Let f ∈ B and µ ∈ B∗, then

〈f ,µ〉 = lim
m−→∞

m∑
−m

(
1− |n|

m+ 1

)
f̂ (n)µ̂(n). (14)

Proof. From theorem 1.11 we have σn(f ) −→ f in B norm, and since σn(f ) is a trigonometric poly-
nomial, which gives us

µ (Sk(f )) =
〈
Sk(f ),µ

〉
=

〈 k∑
j=−k

f̂ (j)eijt ,µ
〉

=
k∑

j−=−k
f̂ (j)〈eijt ,µ〉 =

k∑
j−=−k

f̂ (j)µ̂(j).

Thus we have

σn(f ) =
1

n+ 1

n∑
k=0

Sn(f ) =⇒ 〈σn(f ),µ〉 =
1

n+ 1

n∑
k=0

k∑
j−=−k

f̂ (j)µ̂(j) =
n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)µ̂(j).

Taking the limit as n −→∞ we obtain the result.

If the series on the right hand side of (14) converges then

〈f ,µ〉 = lim
m−→∞

∞∑
−∞

(
1− |n|

m+ 1

)
f̂ (n)µ̂(n). (15)

From that we have the uniqueness theorem

Theorem 1.20 (Uniqueness). If µ ∈ B∗ and µ̂(n) = 0 for all n ∈Z then µ ≡ 0.
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4. For µ ∈ B∗ we define

Sn(µ)(·) =
n∑
−n
µ̂(j)eijt (∼Dn ∗µ) ,

σn(µ)(·) =
n∑
−n

(
1−

|j |
n+ 1

)
µ̂(j)eijt (∼Kn ∗µ) .

We still have

σn(µ) =
1

n+ 1

n∑
k=0

Sn(µ).

They are elements of B∗ by the actions

〈f ,Sn(µ)(·)〉 =
1

2π

∫
T

f (t)Sn(µ)(t) dt =
n∑
−n
µ̂(j)

(
1

2π

∫
T

f (t)e−ijt dt
)

=
n∑
−n
f̂ (j)µ̂(j)

and similarly

〈f ,σn(µ)(·)〉 =
1

2π

∫
T

f (t)σn(µ)(t) dt =
n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)µ̂(j)

for all f ∈ B. We have some remarks:

(a) From the Parseval’s formula 1.19 for any µ ∈ B∗ then σn(µ)
∗
⇀µ in the weak∗ topology of B∗. If

B = C(T ) then as a measure, 〈f ,σn(f )〉 = 1
2π

∫
T
f dσn(f ) which means

dσn(µ) =
n∑
−n

(
1−

|j |
n+ 1

)
µ̂(j)eijt dt.

We also observe that from that σn(µ)�m where m is the Lebesgue measure.

(b) The linear operator Sn : B −→ B maps f 7−→ Sn(f ) is bounded, since for f ∈ B and recall that
eint ∈ B,

‖Sn(f )‖B =

∥∥∥∥∥∥∥∥
n∑

j=−n
f̂ (j)eijt

∥∥∥∥∥∥∥∥
B

≤
n∑

j=−n
|f̂ (j)| · ‖eijt‖B ≤

 n∑
−n
‖eijt‖B

‖f ‖L1 ≤
 n∑
−n
‖eijt‖B

‖f ‖B.
(c) The linear operator S∗n : B∗ −→ B∗ map µ 7−→ Sn(µ) is the adjoint operator of Sn, since for any

µ ∈ B∗ we have for all f ∈ B then

S
∗
n(µ)(f ) =

〈
f ,Sn(µ)

〉
=

n∑
j=−n

f̂ (j)µ̂(j)µ̂(j) =
〈
Sn(f ),µ

〉
= µ ◦ (Sn) (f )

and thus S∗n ∈ B∗∗ with ‖S∗n‖B∗∗ = ‖Sn‖B∗ .

(d) Similarly, Σn : B −→ B maps f 7−→ σn(f ) belongs to B∗ and Σ∗n : B∗ −→ B∗ maps µ 7−→ σn(µ) is
the adjoint of Σn, thus ‖Σ∗n‖B∗∗ = ‖Σn‖B∗ . Indeed we have ‖Σ∗n‖B∗∗ = ‖Σn‖B∗ = 1 since

‖σn(f )‖B =
∥∥∥∥∥ 1

2π

∫
T

Kn(t)f (· − t) dt
∥∥∥∥∥
B
≤ 1

2π

∫
T

Kn(t)‖f ‖B dt = ‖K‖L1(T )‖f ‖B = ‖f ‖B

thus ‖Σn‖B∗ ≤ 1. On the other hand by testing with ei0t = 1 in B we have

‖σn(1)‖B =
∥∥∥∥∥ei0t 1

2π

∫
T

Kn(t) dt
∥∥∥∥∥
B

=
∣∣∣∣∣ 1
2π

∫
T

Kn(t) dt
∣∣∣∣∣ · ‖ei0t‖B = ‖ei0t‖B.

Thus ‖Σn‖B∗ ≥ 1.
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Theorem 1.21. If µ ∈ B∗, the linear operator Σ∗n : B∗ −→ B∗ maps

µ 7−→ Σ∗n(µ) = σn(µ) which has its Fourier series is
n∑
−n

(
1−

|j |
n+ 1

)
µ̂(j)eijt

satisfies ‖Σ∗n‖B∗∗ = 1. In particular ‖σn(µ)‖B∗ ≤ ‖µ‖B∗ for all n ∈Z.

5. Parseval’s formula enables us to characterize sequences of Fourier coefficients of linear functionals.

Theorem 1.22. Let B be a homogeneous Banach space on T . Assume that eint ∈ B for all n ∈ N. Let
{an}n∈Z be a sequence of complex numbers, then the following conditions are equivalent:

(a) ∃ µ ∈ B∗, ‖µ‖B∗ ≤ C such that µ̂(n) = an for all n ∈Z.

(b) For all trigonometric polynomial P then∣∣∣∣∣∣∣∑n∈Z P̂ (n)an

∣∣∣∣∣∣∣ ≤ C‖P ‖B.
Proof. Assume (a) holds, then for a trigonometric polynomial P , we can assume

P (t) =
m∑
−m
cje

ijt =⇒ P̂ (n) =

cn if −m ≤ n ≤m
0 elsewhere.

Thus ∣∣∣∣∣∣∣∑n∈Z P̂ (n)an

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
m∑
−m
P̂ (n)an

∣∣∣∣∣∣∣ =
∣∣∣〈P ,µ〉∣∣∣ ≤ C‖P ‖B

by Parseval’s formula 1.19 we have

〈P ,µ〉 = lim
m−→∞

m∑
−m

(
1− |n|

m+ 1

)
P̂ (n)an =

m∑
−m
P̂ (n)an.

Now assume (b)holds, we can define the linear bounded functional on the set of trigonometric
polynomials in B by

Λ : P 7−→
∑
n∈Z

P̂ (n)an.

Since the set of all trigonometric polynomials is dense in B, Λ extends uniquely to Λ ∈ B∗, then
clearly ‖Λ‖B∗ ≤ C and clearly

Λ̂(n) = 〈eint ,Λ〉 = an = an.

Corollary 1.23. A trigonometric series S ∼
∑
n∈Z ane

int is the Fourier series of some µ ∈ B∗, ‖µ‖B∗ ≤ C
if and only if ‖σm(S)‖B∗ ≤ C for all m, here σm(S) denotes the element in B∗ which has the Fourier series
is

m∑
−m

(
1−

|j |
m+ 1

)
aje

ijt .

Proof. If µ ∈ B∗ with ‖µ‖B∗ ≤ C has its Fourier series is S[µ] ∼
∑
n∈Z ane

int then µ̂(n) = an for all
n ∈Z, then from theorem 1.21 we have

σm(S) = σm(µ) =⇒ ‖σm(S)‖B∗ = ‖σm(µ)‖B∗ = ‖Σ∗m(µ)‖B∗ ≤ ‖Σ∗m‖B∗∗‖µ‖B∗ ≤ C.

Conversely, if ‖σm(S)‖B∗ ≤ C for all m ∈ Z then by Banach-Alaoglu theorem, there exists µ ∈ B∗

such that σm(S)
∗
⇀ µ in the weak∗ topology of B∗ as m −→ ∞ (upto sub-sequence). It is clear that
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‖µ‖B∗ ≤ C as well and by theorem 1.22 we have for all trigonometric polynomial P then

〈P ,µ〉 = lim
m−→∞

〈P ,σm(S)〉

= lim
m−→∞

1
2π

∫
T

P (t)σm(S) dt = lim
m−→∞

m∑
−m

(
1−

|j |
m+ 1

)
P̂ (j)aj =

deg P∑
−deg P

P̂ (j)aj .

On the other hand the Parseval’s formula reads

〈P ,µ〉 = lim
m−→∞

m∑
−m

(
1−

|j |
m+ 1

)
P̂ (j)µ̂(j) =

deg P∑
−deg P

P̂ (j)µ̂(j).

This is true for all trigonometric polynomials P , hence the result follows µ̂(n) = an for all n ∈Z.

6. In the case B = C(T ), the dual space B∗ is identified with M(T )-the space of all Borel measures on
T by mean of the coupling (Rieze’s representation theorem)

〈f ,µ〉 =
∫
T

f dµ for all f ∈ C(T ).

We shall refer to Fourier coefficients of measures as Fourier-Stieltjes coefficients and to Fourier
series of measures as Fourier-Stieltjes series. The mapping

f 7−→ 1
2π
f (t) dt is an isometric embedding of L1(T ) inM(T ).

Observe that if µ = 1
2π f dt then

µ̂(n) = 〈eint ,µ〉 =
1

2π

∫
T

eintf (t) dt =
1

2π

∫
T

f (t)e−int dt = f̂ (n).

7. A measure µ is positive if µ(E) ≥ 0 for every measurable set E, or equivalently
∫
T
f dµ ≥ 0 for all

non-negative f ∈ C(T ). If µ�m, i.e µ = 1
2π f (t) dt for some f ∈ L1(T ), then µ is positive if and only

if f (t) ≥ 0 almost everywhere.

Theorem 1.24. A series S ∼
∑
n∈Z ane

int is the Fourier-Stieltjes series of a positive measure if and only
if for all n ∈Z and t ∈ T

σn(S)(t) =
n∑
−n

(
1−

|j |
n+ 1

)
aje

ijt ≥ 0.

Proof. If there exists µ ∈ M(T ) such that S = S(µ) and µ ≥ 0 then µ̂(n) = an for all n ∈ Z and if
f ∈ C(T ) with f ≥ 0 then

〈f ,σn(µ)〉 =
1

2π

∫
T

f (t)σn(µ)(t) dt =
n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)µ̂(j)

while f ≥ 0 implies σn(f ) = Kn ∗ f = 1
2π

∫
T
Kn(s)f (· − s) ds ≥ 0 as well since Kn ≥ 0, thus

0 ≤ 〈σn(f ),µ〉 =
n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)〈eijt ,µ〉 =

n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)µ̂(j)

and thus (this can be explained also in term of adjoint operator)

〈f ,σn(µ)〉 = 〈σn(f ),µ〉 ≥ 0

for all non-negative f ∈ C(T ), hence σn(µ) ≥ 0 on T . Conversely if σn(S)(t) ≥ 0 on T , as member of
M(T ) = C(T )∗ we have

‖σn(S)‖M(T ) =
1

2π

∫
T

σn(S)(t) dt = a0
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for all n ∈ Z, thus theorem 1.23 implies that there exists µ ∈ M(T ) with ‖µ‖M(T ) = a0 such that

µ̂(n) = an, i.e., S = S(µ), and clearly by weak∗ convergence σn(µ)
∗
⇀µ in M(T ) we have

〈f ,µ〉 = lim
n−→∞

〈f ,σn(S)〉 ≥ 0

for any non-negative f ∈ C(T ).

The condition σn(S)(t) ≥ 0 for all n ∈Z can be replaced by σn(S)(t) ≥ 0 for infinitely many n’s.

8. (Characterization Fourier-Stieltjes coefficients of positive measures as positive definite sequences)
A numerical sequence {an}n∈Z is ”positive definite” if for any sequence {zn} of complex numbers
having only a finite number of non-zero terms we have∑

n,m

an−mznzm ≥ 0.

It is obvious that with the sequence z0 = 1 and zn = 0 elsewhere we obtain a0 ≥ 0.

Theorem 1.25 (Herglotz). A numerical sequence {an}n∈Z is positive definite if and only if there exists
a positive measure µ ∈M(T ) such that µ̂(n) = an for all n ∈Z.

Proof. If an = µ̂(n) for some positive µ ∈M(T ) then

an = µ̂(n) = 〈eint ,µ〉 =
∫
T

e−int dµ

and hence for such a sequence {zn} only has finitely many non-zero terms we have

∑
m,n

an−mznzm =
∑
m,n

∫
T

e−inteimtznzm dµ =
∫
T

∣∣∣∣∣∣∣∑n e−intzn

∣∣∣∣∣∣∣
2

dµ ≥ 0.

Conversely, if {an}n∈Z is a positive definite sequence, we write S ∼
∑
n∈Z ane

int . For any N ∈Z and
t ∈ T we define

zn =

eint if |n| ≤N,
0 if |n| > N.

Then we have ∑
m,n∈Z

am−nznzm =
N∑

m=−N

N∑
n=−N

am−ne
i(n−m)t .

Let k = n−m and re-write the formula above in terms of sum in k, we obtain

0 ≤
∑
m,n∈Z

am−nznzm =
2N∑

k=−2N

(2N+1−|k|)akeikt = (2N+1)
2N∑

k=−2N

(
1− |k|

2N + 1

)
ake

ikt = (2N+1)σ2N (S)(t).

It is true for all t ∈ T and for infinitely many n’s, thus theorem 1.24 concludes that there exists a
positive measure µ ∈M(T ) such that S = S(µ).

Theorem 1.26. If {an} is positive definite then |an| ≤ a0, a−N = aN and
{
an −

an−1+an+1
2

}
is positive defi-

nite.

Proof. Take z0 = 1, zN = z and zn = 0 elsewhere, we have∑
m,n

an−mznzm = a0

(
1 + |z|2

)
+ aN z+ a−N z ≥ 0 for all z ∈C.
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Set z = 1 we have 2a0 + aN + a−N ≥ 0, thus aN + a−N ∈ R. Set z = i we have i(aN − a−N ) ≥ 0, which
means a−N = aN . Thus we can take z ∈C such that

zaN = −|aN | =⇒ 2a0 − 2|aN | ≥ 0 =⇒ |aN | ≤ 0 for allN ∈Z.

This fact can be obtained obviously from Herglotz theorem 1.25, since with the positive measure
µ satisfies µ̂(n) = an then

|an| = |µ̂(n)| ≤
∫
T

|dµ| = µ(T ) = µ(0) = a0.

Finally let dµ1 = eit dµ and dµ−1 = e−it dµ be measures inM(T ), we then have µ̂1(n) = µ̂(n+1) = an+1
and µ̂−1(n) = µ̂(n− 1) = an−1, let

ν = µ−
µ1 +µ−1

2
=⇒ dν =

(
1− e

it + e−it

2

)
dµ = (1− cos t) dµ ≥ 0

and clearly ν̂(n) = an −
an−1+an+1

2 . As a consequence, we have

|ν̂(n)| =
∣∣∣∣an − an−1 + an+1

2

∣∣∣∣ ≤ |ν̂(0)| =
∣∣∣∣a0 −

a1 + a−1

2

∣∣∣∣ = a0 −Re(a1).

9. (Universal multipliers - convolution)

Theorem 1.27 (Universal multipliers). Let B be a homogeneous Banach space on T (contains eint) and
µ ∈M(T ). There exists a unique linear operator Λ on B having the properties:

(i) ‖Λ‖L(B,B) ≤ ‖µ‖M(T ).

(ii) Λ̂f (n) = µ̂(n)f̂ (n) for all f ∈ B.

Proof. If an operator Λ ∈ L(B,B) satisfies (i) and (ii) then for any trigonometric polynomial

P (t) =
m∑

n=−m
P̂ (n)eint , i.e., P̂ (n) = 0 for |n| > m

the corresponding Fourier series of the element ΛP ∈ B is

S[ΛP ] ∼
+∞∑
−∞

Λ̂P (n)eint =
m∑
−m
µ̂(n)P̂ (n)eint .

As B ⊂ L1(T ), the uniqueness theorem 1.8 concludes that the action of Λ is uniquely determined
on the set of trigonometric polynomials on B, and hence on B since (i) and the fact that the set of
trigonometric polynomials is dense in B. For the existence of Λ, let’s define

ΛP (t) =
m∑
−m
µ̂(n)P̂ (n)eint for any trigonometric polynomial P in B.

It is clear that Λ defines a linear operator on the set of trigonometric polynomials on B, we have
left to show that ‖Λ‖B∗ ≤ ‖µ‖M(T ). We observe that if µ�m, i.e., dµ = 1

2πg(t) dt for some g ∈ C(T )
then since µ̂(n) = ĝ(n) for all n ∈Z, we obtain

ΛP (t) =
m∑
−m
ĝ(n)P̂ (n)eint =

m∑
−m

(�g ∗ P ) (n)e−int = g ∗ P (t)

and by lemma 1.7 we have g ∗ P can be seen as the B-valued integral

g ∗ P =
1

2π

∫
T

g(s)Ps(·) ds =⇒ ‖ΛP ‖B = ‖g ∗ P ‖B ≤
(

1
2π

∫
T

|g(s)| ds
)
‖P ‖B = ‖µ‖M(T ) · ‖P ‖B
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and thus ‖Λ‖B∗ ≤ ‖µ‖M(T ). In the general case, recall that

dσn(µ) =
1
2
gn(t) dt where gn(t) =

n∑
−n

(
1−

|j |
n+ 1

)
µ̂(j)eijt ∈ C(T )

satisfies σn(µ)
∗
⇀ µ in the weak∗ topology of M(T ), also ‖σn(µ)‖M(T ) ≤ ‖µ‖M(T ) by theorem 1.21.

Finally by theorem 1.4 we have

(gn ∗ P ) (t) =
n∑
−n

(
1−

|j |
n+ 1

)
µ̂(j)P̂ (j)eijt =

m∑
−m

(
1−

|j |
n+ 1

)
µ̂(j)P̂ (j)eijt

if we choose n > |m| = deg P . Thus

‖gn ∗ P −ΛP ‖B =

∥∥∥∥∥∥∥
m∑
−m

(
|j |
n+ 1

)
µ̂(j)P̂ (j)eint

∥∥∥∥∥∥∥
B

=
1

n+ 1

∥∥∥∥∥∥∥
m∑
−m
|j |µ̂(j)P̂ (j)eint

∥∥∥∥∥∥∥
B

−→ 0

as n −→ ∞. Thus since ‖gn ∗ P ‖B ≤ ‖µ‖M(T ) for all n ∈ N we obtain ‖ΛP ‖B ≤ ‖µ‖M(T ), and the
extension to all f ∈ B is obvious since the set of trigonometric polynomials in B is dense in B.

Corollary 1.28. Let f ∈ B and µ ∈M(T ), then
{
µ̂(n)f̂ (n)

}
is the sequence of Fourier coefficients of some

function in B.

In view of these above result, we shall write µ ∗ f instead of Λf , and refer to it as the convolution
of µ and f .

10. (Convolution of a measures and a linear functional using Fourier series) For µ ∈M(T ) we define
µ# ∈M(T ) by

µ#(E) = µ(−E) for all Borel sets E, or equivalently, by
∫
T

f (t) dµ# =
∫
T

f (−t) dµ for all f ∈ C(T ).

It is clear that
µ̂#(n) = µ̂(n) for n ∈Z.

Let Λ ∈ L(B,B) be the operator which maps f 7−→ Λf = µ ∗ f previously. If Λ∗ ∈ L(B∗,B∗) be the
adjoint of Λ, then for any ν ∈ B∗ and f ∈ B by Parseval’s formula we have

lim
n−→∞

n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)µ̂(j)ν̂(j) = 〈Λf ,ν〉 = 〈f ,Λ∗ν〉 = lim

n−→∞

n∑
−n

(
1−

|j |
n+ 1

)
f̂ (j)Λ̂∗ν(j).

Since it is true for all f ∈ B, by testing with trigonometric polynomials in B we deduce that

Λ̂∗ν(n) = µ̂(n)ν̂(n) = µ̂#(n)ν̂(n) for all n ∈Z.

In other words, Λ∗ν is the element of B∗ which has its Fourier series is

S[Λ∗ν] ∼
∑
n∈Z

µ̂#(n)ν̂(n)eint .

We denote this element as Λ∗ν = µ# ∗ ν. We have proved the following theorem.

Theorem 1.29. Let B be a homogeneous Banach space on T (contains eint) and B∗ its dual. If µ ∈M(T )
and ν ∈ B∗, then there exists a unique element in B∗, denoted by µ ∗ ν which has its Fourier series is

S[µ ∗ ν] ∼
∑
n∈Z

µ̂(n)ν̂(n)eint .

Moreover, ‖µ ∗ ν‖B ≤ ‖µ‖M(T )‖ν‖B.
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In particular, for two measures µ,ν ∈M(T ) there exists a unique measure µ ∗ ν ∈M(T ) which has
its Fourier series is (Fourier-Stieltjes series of the measure)

S[µ ∗ ν] ∼
∑
n∈Z

µ̂(n)ν̂(n)eint .

11. Of course we can define the convolution of two measures µ,ν ∈ M(T ) in a direct way. For any
f ∈ C(T ), the integral

I(f ) =
"

T
2
f (t + s) dµ(t)dν(s)

is well-defined and f 7−→ I(f ) defines a bounded linear functional onC(T ) since |I(f )| ≤ ‖µ‖M(T )‖ν‖M(T ).
By Rieze’s representation theorem there exists a unique measure λ ∈M(T ) such that

I(f ) =
∫
T

f (t) dλ(t) =
∫
T

2
f (t + s) dµ(t) dν(s) for all f ∈ C(T ).

By taking f (t) = eint we obtain λ̂(n) = µ̂(n)ν̂(n) for n ∈Z, thus λ = µ ∗ ν. In other words,∫
T

f d(µ ∗ ν) =
∫
T

2
f (t + s) dµ(t) dν(s) for all f ∈ C(T )

or by taking a sequence of continuous functions which converges to χE for a closed set E, we have

(µ ∗ ν)(E) =
∫
T

µ(E − s) dν(s) for all Borel set E.

By regularity it is true for all Borel set E.

12. A measure µ ∈M(T ) is discrete if µ =
∑n
j=1 ajδsj where {aj } are complex numbers.

Lemma 1.30. If ν =
∑n
j=1 ajδsj then ‖ν‖M(T ) =

∑n
j=1 |aj |.

Proof. First of all, if ν = aδ0 for a ∈ C\{0} then with µ = |a|δ0 we have ν � µ, thus by Radon-
Nikodym theorem

dν =
dν
dµ

dµ =⇒ ν(E) =
∫
E

dν
dµ

dµ =

a if 0 ∈ E,
0 if 0 < E

=⇒
∫
E

(
dν
dµ
− a
|a|

)
dµ = 0

for all Borel set E, which implies dν
dµ = a

|a| µ-a.e. and hence the total variation of ν is, by definition

d|ν| =
∣∣∣∣∣ a|a|

∣∣∣∣∣ dµ = |a|δ0 =⇒ ‖aδ0‖M(T ) = |a|.

For the general case, we can assume {sj }nj=1 are disjoint. Let µ =
∑n
j=1 |aj |δsj then clearly ν� µ, so

dν =
dν
dµ

dµ =⇒ ν(E) =
∫
E

dν
dµ

=
∫
E

 n∑
j=1

aj
|aj |

χE(aj )

 dµ =⇒ dν
dµ

=
n∑
j=1

aj
|aj |

χ{aj } µ− a.e.

Thus

d|ν| =

∣∣∣∣∣∣∣∣
n∑
j=1

aj
|aj |

χ{aj }

∣∣∣∣∣∣∣∣ dµ =⇒ ‖ν‖M(T ) =
n∑
j=1

|aj |.

A measure µ ∈M(T ) is continuous if µ({t}) = 0 for every t ∈ T , equivalently µ is continuous if

lim
η−→0

∫ t+η

t−η
d|µ| = 0 for every t ∈ T .
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Theorem 1.31. Every measure µ ∈M(T ) can be decomposed to a sum µ = µc+µd where µc is continuous
and µd is discrete.

If µ ∈M(T ) is a continuous measure then for any ν ∈M(T ), from the formula

(µ ∗ ν)(E) =
"

T
2
µ(E − s) dν(s)

we deduce that µ ∗ ν is continuous. Since δa ∗ δb = δa+b, if µ =
∑n
j=1 ajδsj and ν =

∑n
j=1 bjδtj then

µ ∗ ν =
n∑

j,k=1

ajbkδsj+tk .

Let µ = µc +µd and µ# = µ#
c +µ#

d be the decompositions to continuous and discrete parts, we have

µ ∗µ# =
(
µc ∗µ#

c +µc ∗µ#
d +µd ∗µ#

c

)
︸                           ︷︷                           ︸

(µ∗µ#)c

+
(
µd ∗µ#

d

)
.

Assume that µd =
∑n
j=1 ajδj , then µ#

d =
∑n
j=1 ajδ−sj and thus µ ∗µ#({0}) =

∑n
j=1 |aj |2.

Lemma 1.32. Let µ ∈M(T ), then
µ ∗µ#{0} =

∑
t∈T
|µ({t})|2.

In particular, µ is continuous if and only if (µ ∗µ#)({0}) = 0.

The discrete part of a measure µ ∈M(T ) can be recovered from its Fourier-Stieltjes series.

Theorem 1.33. Let µ ∈M(T ) and t ∈ T , then

µ({t}) = lim
m−→∞

1
2m+ 1

m∑
−m
µ̂(n)eint .

Proof. For t ∈ T , the function

ϕm(s) =
1

2m+ 1
Dm(t − s) =

1
2m+ 1

m∑
−m
e−inseint

is bounded by 1 and tends to zero uniformly outside any neighborhood of t. Now the measure

ν = µ−µ({t})δt

satisfies ν({t}) = 0. Let’s recall that the total variance of complex measures can be computed by

|ν|(E) = sup


n∑
j=1

|ν(Ei)| : n ∈N,E1, . . . ,En disjoint,E =
n⋃
j=1

Ej

 .
From that we obtain |ν|({t}) = 0. Thus by dominated convergence theorem we have

lim
η−→0

∫ t+η

t−η
d|ν| = lim

η−→0

∫
T

χ(t−η,t+η) d|ν| = |ν|({t}) = 0.

Thus we have〈
ϕm,µ−µ({t})δt

〉
= 〈ϕm,ν〉 =

∫
T

ϕm dν =
∫

(t−η,t+η)
ϕm dν +

∫
T\(t−η,t+η)

ϕm dν −→ 0

20



as m −→∞ since ϕm is bounded by 1 and converges to 0 uniformly away from t. Since

〈
ϕm,µ−µ({t})δt

〉
= 〈ϕm,µ〉 −

∫
T

ϕmµ({t}) dδt

=
1

2m+ 1

m∑
−m
〈e−ins,µ〉eint −µ({t})

=
1

2m+ 1

m∑
−m
µ̂(−n)eint −µ({t}) =

1
2m+ 1

m∑
−m
µ̂(n)e−int −µ({t})

we have 〈
ϕm,µ−µ({t})δt

〉
=

1
2m+ 1

m∑
−m
µ̂(n)eint −µ({t})

and the result follows from the fact that
〈
ϕm,µ−µ({t}

〉
−→ 0 as m −→∞.

Corollary 1.34 (Wiener). Let µ ∈M(T ) then∑
t∈T
|µ({t})|2 = lim

m−→∞
1

2m+ 1

m∑
−m
|µ̂(n)|2.

In particular, µ is continuous if and only if

lim
m−→∞

1
2m+ 1

m∑
−m
|µ̂(n)|2 = 0.

Proof. Apply theorem 1.33 to µ ∗µ# at t = 0 we obtain the result.

2 Fourier transform

• We denote L1(R) means L1(R,m) wherem is the Lebesgue measure on R, S(R) the space of Schwartz
functions on R and C0(R) the set of functions f that vanishes at infinity, i.e., {x : |f (x)| ≥ ε} is
compact for all ε > 0.

• The Fourier transform follows the following convention

Ff (ξ) = f̂ (ξ) =
∫
R

f (x)e−iξx dx for ξ ∈ R̂

where R̂ is the space of frequencies, another copy of R. The inversion formula is (under some mild
conditions)

f (x) = F−1[f̂ ] =
1

2π

∫
R̂

f̂ (ξ)eiξx dξ for x ∈R.

• The Fejer’s kernel is {Kλ : λ > 0} where Kλ(x) = λK(λx) with

K(x) =
1

2π

(sinx/2
x/2

)2
=

1
2π

∫ 1

−1
(1− |ξ |)eiξx dξ =

∫ 2π

−2π
(1− 2π|ξ |)e2πiξx dξ.

We have ‖Kλ‖L1(R) = 1 for all λ > 0, it is a summability kernel with Kλ −→ δ0 as λ −→ ∞. Its
Fourier transform is

K̂λ(ξ) =
(
1− |ξ |

λ

)
χ[−λ,λ](ξ).

The Fejer’s kernel does not belong to S(R), but is is infinitely differentiable. As tempered distribu-
tions, λ−1Kλ −→ 1

2π in S′(R) as λ −→ 0, thus λ−1K̂λ −→ δ0 in S′(R) as λ −→ 0. It is indeed true that
λ−1Kλ −→ 1

2π uniformly on compact sets of R.
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• For f ∈ L1(R) and m ∈Z we have∫
T

m∑
−m
|f (t − 2πn)| dt =

m∑
−m

∫
T+2πn

|f (s)| ds =⇒
∫
T

∞∑
−∞
|f (t − 2πn)| dt = ‖f ‖L1(R)

by monotone convergence theorem. Thus the series
∑∞
−∞ f (t−2πn) is finite a.e. in T , which implies

it converges absolutely for a.e. t ∈ T , hence the function

ϕ(t) := 2π
∑
n∈Z

f (t − 2πn)
(
‖ϕ‖L1(T ) =

1
2π

∫
T

|ϕ(t)| dt
)

is well-defined as a (2π-periodic) function in L1(T ) with ‖ϕ‖L1(T ) ≤ ‖f ‖L1(R). For n ∈Z then

ϕ̂(n) =
1

2π

∫
T

ϕ(t)e−int dt

=
∞∑

j=−∞

∫
T

f (t − 2πj)e−int dt =
∞∑

j=−∞

∫
T+2πj

f (s)e−ins dt =
∫
R

f (s)e−ins ds = f̂ (n).

If we denote fλ(x) = λf (λx), and ϕλ(t) = 2π
∑
n∈Z fλ(t − 2πn) then similarly ϕ̂λ(n) = f̂λ(n) = f̂

(
n
λ

)
.

——————————————————

2.1 Fourier-Stieltjes transforms

We denote by M(R) the space of all finite Borel measures on R, it is a normed space with the total mass
norm on M(R) is defined by ‖µ‖M(R) =

∫
R

1 d|µ| = |µ|(R). Recall that
(
M(R),‖ · ‖M(R)

)
is identified with

the dual space of C0(R) by means of the coupling (‖ · ‖M(R) is identified with the dual norm)

〈f ,µ〉M(R) =
∫
R

f dµ, f ∈ C0(R), µ ∈M(R).

It is clear that the above formula defines µ as a linear functional on a larger space BC(R). The weak∗

topology onM(R) is called the ”vague topology”, which is defined by µn
∗
⇀µ inM(R) iff 〈f ,µn〉 −→ 〈f ,µ〉

as n −→∞ for all f ∈ C0(R) (we suppress the subscript M(R) in the product).

1. The mapping f 7−→ f dm identifies L1(R,m) with a closed subspace of
(
M(R),‖ · ‖M(R)

)
, since if

fn −→ f in L1(R,m) then for µn = fn dm and µ = f dm we have

‖µn −µ‖M(R) =
∫
R

1 d|µn −µ| =
∫
R

|fn − f | dm = ‖fn − f ‖L1 −→ 0 as n −→∞.

2. The convolution of a measure µ ∈M(R) and a function ϕ ∈ C0(R,C) is a function defined by

(µ ∗ϕ)(x) =
∫
R

ϕ(x − y) dµ(y).

Since |µ|(R) <∞, it is clear that ‖µ ∗ϕ‖u ≤ ‖µ‖M(R) · ‖ϕ‖u thus the formula above is well-defined.

Lemma 2.1. µ ∗ϕ ∈ C0(R) for all µ ∈M(R) and ϕ ∈ C0(R).

Proof. The uniform continuity of ϕ ∈ C0(R) ⊂ Cc(R) implies that µ∗ϕ is continuous. For ε > 0, let’s
define the compact set Aε to be

Aε =
{
z ∈R : |ϕ(z)| ≥ ε

2|µ|(R)

}
.
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Since Aε is compact, there exists n ∈N such that Aε ⊂ [−n,n]. Also it is clear that ϕ ∈ L1(|µ|), hence
there exists m ∈N such that ∫

R\[−m,m]
|ϕ(z)| d|µ(z)| < ε

2
.

For |x| > m+n then (x −Aε)∩ [−m,m] = ∅, thus∫
R

|ϕ(x − y)| d|µ(y)| =
∫
x−Aε
|ϕ(x − y)| |dµ(y)|+

∫
R\(x−Aε)

|ϕ(x − y)| |dµ(y)| < ε
2

+
ε

2|µ|(R)
|µ|(R) = ε.

Hence {x ∈R : |µ ∗ϕ(x)| ≥ ε} ⊂ [−(m+n),m+n] which is compact since it is closed already.

3. The convolution of two measures µ,ν ∈M(R) is another measure defined by

(µ ∗ ν)(E) =
∫
R

µ(E − y) dν(y)

=
∫
R

∫
R

χE−y(x) dµ(x) dν(y) =
∫
R

∫
R

χE(x+ y) dµ(x) dν(y).

for every Borel set E ⊂ R. It is clear that µ ∗ ν ∈M(R) and ‖µ ∗ ν‖M(R) ≤ ‖µ‖M(R) · ‖ν‖M(R). We can
generalize the above formula to the following.

Lemma 2.2. For any bounded Borel measurable function h : R −→R, we have∫
R

h(x) d(µ ∗ ν)(x) =
∫
R

∫
R

h(y + z) dµ(y) dν(z).

Proof. First of all the claim is true for all characteristic function χE where E is a Borel set, thus by
linearity it is true for all (Borel) simple functions. Write h = h+ − h− where h+,h− are non-negative
bounded Borel measurable functions, the finite properties of µ,ν an µ ∗ ν implies that they h± is
(µ∗ν)-integrable, and (y,z) 7−→ h(y+z) is µ⊗ν-integrable as well (under the product measure). The
general case follows by these observations and the monotone convergence theorem.

4. We define the Fourier-Stieltjes transform of a measure µ ∈M(R) to be a function by

Fµ(ξ) = µ̂(ξ) =
〈
eiξ(·),µ

〉
M(R)

=
∫
R

e−iξx dµ(x) for all ξ ∈ R̂.

If µ is absolutely continuous with respect to the Lebesgue measure on R, say µ = f (x) dx for some
f ∈ L1(R,m), then clearly µ̂(ξ) = f̂ (ξ). Many properties of L1-Fourier transforms are shared by
Fourier-Stieltjes transforms:

(a) If µ ∈M(R) then clearly |µ̂(ξ)| ≤ ‖µ‖M(R).

(b) F :M(R) −→ BUC(R̂). Indeed, for ξ,η ∈ R̂, we have∣∣∣µ̂(ξ + η)− µ̂(ξ)
∣∣∣ =

∣∣∣∣∣∫
R

e−iξx
(
e−iηx − 1

)
d|µ(x)|

∣∣∣∣∣ ≤ ∫
R

|e−iηx − 1| d|µ(x)|.

The integral on the right hand side is independent of ξ, and |e−iηx − 1| ≤ 2 ∈ L1(R, |µ(x)|), thus
dominated convergence theorem can be applied to deduce that:

lim
η−→0

sup
ξ∈R

∣∣∣µ̂(ξ + η)− µ̂(ξ)
∣∣∣ ≤ lim

η−→0

∫
R

|e−iηx − 1| d|µ(x)| =
∫
R

(
lim
η−→0

|e−iηx − 1|
)
d|µ(x)| = 0.

(c) For µ,ν ∈M(R) then µ̂ ∗ ν(ξ) = µ̂(ξ)ν̂(ξ) for any ξ ∈ R̂. It follows by lemma 2.2 by

µ̂ ∗ ν(ξ) =
∫
R

e−iξx d(µ ∗ ν)(x)

=
∫
R

e−iξ(y+z) dµ(y) dν(z) =
(∫

R

e−iξy dµ(y)
)(∫

R

e−iξz dν(z)
)

= µ̂(ξ)ν̂(ξ).
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(d) We have an analog of Parseval’s formula.

Theorem 2.3 (Parseval’s formula). Let µ ∈M(R) and f ∈ L1(R,m)∩C(R) such that f̂ ∈ L1(R̂,m),
then ∫

R

f (x) dµ(x) =
1

2π

∫
R̂

f̂ (ξ)µ̂(−ξ) dξ. (16)

Proof. Note that L1(R) ∩ C(R) ⊂ C0(R), thus the integral on the left of (16) makes sense.
Indeed, for each ε > 0 the set {x ∈R : |f (x)| ≥ ε} has measure at most ε−1‖f ‖L1 , thus it must be
a bounded set and hence it is compact in R since it is closed. We can use the Fourier inversion
formula to deduce that

f (x) =
1

2π

∫
R̂

f̂ (ξ)eiξx dξ

and hence since f̂ ∈ L1(R̂), Fubini’s theorem reads∫
R

f (x) dµ(x) =
1

2π

∫
R

(∫
R̂

f̂ (ξ)eiξx dξ
)
dµ(x)

=
1

2π

∫
R̂

f̂ (ξ)
(∫

R

eiξxdµ(x)
)
dξ =

1
2π

∫
R̂

f̂ (ξ)µ̂(−ξ) dξ.

Another way to rewrite this result is∫
R

f (x) dµ(x) =
1

2π

∫
R̂

f̂ (ξ)µ̂(ξ) dξ.

(e) (Uniqueness theorem)If µ̂(ξ) = 0 for all ξ ∈ R̂, then µ = 0.

A departure from the theory of L1-Fourier transforms is the falling of the Riemann-Lebesgue
lemma: the Fourier-Stieltjes transform of a measure µ need not vanish at infinity.

5. The assumption f̂ ∈ L1(R̂) justifies the change of order of integration by Fubini’s theorem; however
it is not really needed. In particular, we have the following theorems.

Theorem 2.4. If f ∈ L1(R)∩C(R) then:∫
R

f (x) dµ(x) = lim
λ−→∞

1
2π

∫ λ

−λ

(
1− |ξ |

λ

)
f̂ (ξ)µ̂(−ξ) dξ.

Proof. Recall the Fejer’s kernel Kλ(x) = λK(λx) satisfies K̂λ(ξ) =
(
1− |ξ |λ

)
χ[−λ,λ](ξ). Now we have

fλ = Kλ ∗ f ∈ L1(R)∩C(R) and f̂λ = K̂λ · f̂ ∈ L1(R̂), thus Parseval’s formula 2.3 implies∫
R

fλ(x) dµ(x) =
1

2π

∫
R̂

f̂λ(ξ)µ̂(−ξ) dξ ⇐⇒
∫
R

(Kλ ∗ f )(x) dµ(x) =
1

2π

∫
R̂

K̂λ(ξ)f̂ (ξ)µ̂(−ξ) dξ

Since Kλ ∗ f −→ f everywhere since f ∈ C(R) as λ −→∞ (summability kernel), and since L1(R)∩
C(R) ⊂ C0(R), we have ‖Kλ ∗ f ‖L∞(R) ≤ ‖Kλ‖L1(R)‖f ‖L∞ = ‖f ‖L∞ ∈ L1(R,µ), thus the dominated
convergence theorem applies to (R,µ) gives us the desired formula.

As a corollary we have:

Corollary 2.5. If f ∈ L1(R)∩C(R) such that f̂ (ξ)µ̂(−ξ) ∈ L1(R̂) then (16) holds true.

Proof. Using the same technique Kλ ∗ f , then if f̂ (ξ)µ̂(−ξ) ∈ L1(R̂) in the limit we obtain (16) by
dominated convergence theorem.
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6. The problem of characterizing Fourier-Stieltjes transforms among BUC(R̂) is very hard. One im-
mediate result we can have is if f ∈ FL1, say f = ĝ, then with µ = g(x) dxwe have f (ξ) = ĝ(ξ) = µ̂(ξ).

Theorem 2.6. If µ ∈M(R) and Vλ is de la Vallée Poussin’s kernel Vλ = 2K2λ −Kλ then µ ∗Vλ ∈ L1(R)
and �µ ∗Vλ(ξ) = µ̂(ξ) for |ξ | ≤ λ.

Proof. First of all observe that ‖Vλ‖L1 ≤ 2‖K2λ‖L1 + ‖Kλ‖L1 = 3. We have (x,y) 7−→ Vλ(x − y) from
(R,m)× (R,µ) −→R is measurable and satisfies∫

R

|Vλ(x − y)| dx ≤ ‖Vλ‖L1 for all y ∈R, and
∫
R

∫
R

|Vλ(x − y)| dx dµ(y) ≤ 3‖µ‖M(R).

Thus Tonelli’s theorem concludes that (x,y) 7−→ Vλ(x − y) ∈ L1
(
(R,m) × (R,µ)

)
, hence by Fubini’s

theorem we have µ ∗Vλ ∈ L1(R) since∫
R

∣∣∣µ ∗Vλ(x)
∣∣∣ dx =

∫
R

∫
R

∣∣∣Vλ(x − y)
∣∣∣ dµ(y) dx =

∫
R

∫
R

∣∣∣Vλ(x − y)
∣∣∣ dx dµ(y) ≤ 3‖µ‖M(R).

The rest is straight-forward from the Fourier transform of Vλ, which is

V̂λ(ξ) =


1 |ξ | ≤ λ,
2− |ξ |λ λ ≤ |ξ | ≤ 2λ,
0 2λ ≤ |ξ |.

=⇒ �µ ∗Vλ(ξ) = V̂λ(ξ)µ̂(ξ) = µ(ξ)

if |ξ | ≤ λ. The proof is complete.

A further characterization is given below.

Theorem 2.7. Let ϕ ∈ C(R̂), define

Φλ(x) =
1

2π

∫ λ

−λ

(
1− |ξ |

λ

)
ϕ(ξ)eiξx dξ.

Then ϕ is a Fourier-Stieltjes transform iff Φλ ∈ L1(R) for all λ > 0 and ‖Φλ‖L1(R) is bounded as λ −→∞.

Proof. If ϕ = µ̂ for some µ ∈M(R), then ϕ = µ̂ ∈ BUC(R̂), thus K̂λ(·)µ̂(·) ∈ L1(R̂) and Kλ ∗ µ ∈ L1(R)
by an analog to the argument in the proof of theorem 2.6. The Fourier inversion formula reads

(Kλ ∗µ) (x) =
1

2π

∫
R̂

K̂λ(ξ)µ̂(ξ)eiξx dξ =
1

2π

∫ λ

−λ

(
1− |ξ |

λ

)
ϕ(ξ)eiξx dξ = Φλ(x).

Therefore Φλ = Kλ ∗µ for all λ > 0, and clearly ‖Φλ‖L1 ≤ ‖Kλ‖L1‖µ‖M(R) = ‖µ‖M(R).

For the converse, for each λ > 0 we can define the corresponding measure µλ = Φλ(x) dx ∈M(R).
Since ‖µλ‖M(R) ≤ C for all λ > 0, Banach-Alaoglu’s theorem implies that there exists a sequence

λn −→ ∞ and µ ∈ M(R) such that µλn
∗
⇀ µ in M(R). Recall that µ̂λ(ξ) = Φ̂λ(ξ), and furthermore

K̂λ(ξ)ϕ(ξ) ∈ L1(R̂) reads

F
[
K̂λ(·)ϕ(·)

]
(−x) = F−1

[
K̂λ(·)ϕ(·)

]
(x) = Φλ(x) ∈ L1(R)

which, by the Fourier inversion formula gives us Φ̂λ(ξ) = K̂λ(ξ)ϕ(ξ) for ξ ∈ R̂. We also obtain∥∥∥K̂λ(ξ)ϕ(ξ)
∥∥∥
u

=
∥∥∥Φ̂λ∥∥∥u ≤ ‖Φλ‖L1 ≤ C =⇒ ‖ϕ‖u ≤ C

by sending λ −→ ∞. In order to show ϕ = µ̂, it suffices to show that (since both ϕ and µ̂ are
continuous) ∫

R̂

f̂ (ξ)µ̂(ξ) dξ =
∫
R̂

f̂ (ξ)ϕ(ξ) dξ for all f̂ ∈ C∞c (R̂). (17)
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For such test functions f̂ we have f ∈ S(R) ⊂ L1(R)∩C0(R). The key tool is Parseval’s identity (16),
indeed we have∫

R

f (x) dµλ(x) =
1

2π

∫
R̂

f̂ (ξ)µ̂λ(−ξ) dξ =
1

2π

∫
R̂

f̂ (ξ)Φ̂λ(−ξ) dξ =
1

2π

∫
R̂

f̂ (ξ)K̂λ(−ξ)ϕ(−ξ) dξ.

Let λ −→ ∞ along the sequence λn and using µλn
∗
⇀ µ on the left and dominated convergence

theorem on the right (thanks to ϕ is uniformly bounded) we obtain∫
R

f (x) dµ(x) =
1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ =⇒ 1
2π

∫
R̂

f̂ (ξ)µ̂(−ξ) dξ =
1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ

by using the Parseval’s identity again for the left hand side. Thus (17) is justified and the proof is
complete.

Note that the application of Parseva’s formula above is typical and is the standard way to utilize the
weak∗ limit inM(R). Nothing like that was needed in the case ofM(T ) since weak∗ convergence in
M(R) implies point-wise convergence of the Fourier-Stieltjes coefficients (the exponentials belong
to C(T ) of which M(T ) is the dual). The exponentials on R do not belong to C0(R) and it is false
that weak∗ convergence inM(R) implies pointwise convergence of the Fourier-Stieltjes transforms.
However the argument above gives:

Lemma 2.8. Let µn
∗
⇀µ in M(R) such that µ̂n(ξ) −→ ϕ(ξ) point-wise for some ϕ ∈ C(R̂), then µ̂ = ϕ.

Proof. For a test function f̂ ∈ C∞c (R̂), recall that f ∈ S(R) ⊂ L1(R)∩C0(R) and thus the Parseval’s
formula reads∫

R

f (x) dµn(x) =
1

2π

∫
R̂

f̂ (ξ)µ̂n(−ξ) dξ =⇒
∫
R

f (x) dµ(x) =
1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ

by sending n −→∞. The result follows from Parseval’s formula again.

A related result is the following:

Lemma 2.9. If X is a LCH space and {µn} ⊂M(X), µn −→ µ vaguely, and ‖µn‖ −→ ‖µ‖, then we have∫
X
f dµn −→

∫
X
f dµ for every f ∈ BC(X). Moreover, the hypothesis ‖µn‖ −→ ‖µ‖ cannot be omitted.

7. A similar application of Parseval’s formula gives the following useful criterion:

Theorem 2.10. A function ϕ defined and continuous on R̂, is a Fourier-Stieltjes transform if and only
if there exists a constant C such that∣∣∣∣∣ 1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ
∣∣∣∣∣ ≤ C sup

x∈R
|f (x)| (18)

for every f ∈ L1(R) such that f̂ has compact support.

Proof. First of all, let T(R) = {f ∈ L1(R) : f̂ ∈ Cc(R̂)} then T(R) ⊂ L1(R) ∩ C0(R) by Riemann-
Lebesgue lemma. By Parseval’s formula∫

R

f (x) dµ(x) =
1

2π

∫
R̂

f̂ (ξ)µ̂(−ξ) dξ =⇒
∣∣∣∣∣ 1
2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ
∣∣∣∣∣ ≤ ‖µ‖sup

x∈R
|f (x)|.

Conversely, assuming (18) holds true for all f ∈ T(R). Let’s define the linear functional

Λ : T(R) −→ C maps f 7−→ 1
2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ with |Λ(f )| ≤ C‖f ‖u . (19)

We claim that T(R) is dense in C0(R). Indeed, given any f ∈ C0(R), we can find fn ∈ C∞c (R) with
‖fn−f ‖u −→ 0. For each fn ∈ C∞c (R), in turn we have f̂n ∈ S(R) ⊂ L1(R̂), there exists ĝn ∈ C∞c (R̂) such
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that ‖ĝn− f̂n‖L1(R̂) < 2−n, which implies that ‖gn−fn‖u < 2−n, thus we have shown that gn ∈ T(R) and
gn −→ f uniformly. Therefore the linear functional Λ defined in (19) can be extended uniquely
to Λ : C0(R) −→ C with the same bound. By Rieze’s representation theorem, there exists a unique
measure µ ∈M(R) such that ‖µ‖ = ‖Λ‖ ≤ C and

Λ(f ) =
∫
R

f dµ =
1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ for f ∈ T(R).

By Parseval’s formula we deduce that û = ϕ and the proof is complete.

One observation we didn’t use in the proof is that, if we assume (18) holds for f ∈ T(R), we can
deduce first that ϕ ∈ L∞(R̂). Indeed, it is obvious that F[T(R)] is dense in C0(R̂), since C∞c (R̂) is
dense in C0(R̂) and F−1[C∞c (R̂)] ⊂ S(R) ⊂ L1(R). Thus the linear map

Φ : Cc(R̂) −→ C maps f 7−→
∫
R̂

f̂ (ξ)ϕ(−ξ) dξ with |Φ(f )| ≤ C‖f ‖u ≤ ‖f̂ ‖L1(R̂)

extends uniquely to a bounded linear functional on L1(R̂). The Rieze’s representation (L1)∗ = L∞

gives us the unique u ∈ L∞(R̂) such that ϕ(ξ) = u(−ξ) and hence ϕ ∈ L∞(R̂).

The family of function f such that (18) holds true can be taken in many ways. We need a collection
of functions {f : f ∈ J} such that they are dense in C0(R) and {f̂ : f ∈ J} is dense in C0(R̂), for
example {f : f̂ ∈ C∞c (R̂)} or {f : f ∈ C∞c (R)}.

8. With measures on R we can associate measures on T simply by integrating 2π-periodic functions.
Formally, if E is a Borel set on T , which is identified with (−π,π], we denote by En = E + 2πn and
Ẽ =

⋃
n∈ZEn. If µ ∈M(R) we define

µ
T

(E) = µ(Ẽ).

It is clear that µ
T

is a measure on T and that identifying continuous functions on T with 2π-
periodic functions on R gives us ∫

R

f (x) dx =
∫
T

f (t) dt.

The mapping µ 7−→ µ
T

is an operator of norm 1 from M(R) onto M(T ). It also follows that for
n ∈ Z then µ̂(n) = µ̂

T
(n), thus the restriction of a Fourier-Stieltjes transform to Z gives a sequence

of Fourier-Stieltjes coefficients.

Theorem 2.11. A function ϕ defined and continuous on R̂ is a Fourier-Stieltjes transform if and only
if there exists C > 0 such that for all λ > 0, {ϕ(λn)}n∈Z are the Fourier-Stieltjes coefficients of a measure
µ
T
∈M(T ) with ‖µ

T
‖M(T ) ≤ C.

Proof. If ϕ = µ̂ for some µ ∈M(R) then ϕ(n) = µ̂(n) = µ̂
T

(n) for all n ∈ Z, and ‖µ
T
‖M(T ) ≤ ‖µ‖M(R).

Let’s denote by µλ the measure in M(R) satisfying∫
R

f (x) dµλ(x) =
∫
R

f (λx) dµ(x) for all f ∈ C0(R)

then we have ‖µλ‖M(R) = ‖µ‖M(R) for all λ > 0, and clearly µ̂λ(ξ) = µ̂(λξ) = ϕ(λξ) for ξ ∈ R̂. Thus
after transferring to a measure in M(T ) we obtain

F
[
(µλ)

T

]
(n) = µ̂λ(n) = ϕ(λn)

thus {ϕ(λn)}n∈Z are the Fourier-Stieltjes coefficients (µλ)
T
∈M(T ) with ‖(µλ)

T
‖M(T ) ≤ ‖µ‖M(R).

Conversely, if there exists C > 0 such that for all λ > 0 we have {ϕ(λn)}n∈Z are the Fourier-Stieltjes
coefficients µλ ∈M(T ) with ‖µλ‖M(T ) ≤ C, then we want to estimate the integral

1
2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ for f ∈ L1(R), f̂ ∈ C∞c (R̂)
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in order to use theorem 2.10. Let’s assume supp f̂ ⊂ [−R,R] and λ = R/mwithm ∈N, we can divide
[−R,R] into 2m siub-interval of length λ, and we can approximate the integral by Riemann’s sum,
that is given ε > 0, there exists m ∈N large so that∣∣∣∣∣∣∣ 1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ − λ
2π

m∑
n=−m

f̂ (nλ)ϕ(−nλ)

∣∣∣∣∣∣∣ < ε. (20)

Recall that if f ∈ L1(R) then for

ψλ(t) =
∞∑
−∞

f
( t − 2πn

λ

)
we have ψλ ∈ L1(T ) with ψ̂λ(n) =

λ
2π
f̂ (nλ).

Thus if ϕ = µ̂λ for some µλ ∈M(T ) with ‖µλ‖M(T ) ≤ C then

λ
2π

m∑
n=−m

f̂ (nλ)ϕ(−nλ) =
m∑
−m
ψ̂λ(n)µ̂λ(−n)

The Parseval’s formula for µλ ∈M(T ) reads

〈
ψλ,µλ

〉
M(T ) = lim

k−→∞

k∑
−k

(
1− |n|

k + 1

)
ψ̂λ(n)µ̂λ(−n) =

m∑
−m
ψ̂λ(n)µ̂λ(−n) =

λ
2π

m∑
n=−m

f̂ (nλ)ϕ(−nλ).

Thus we obtain ∣∣∣∣∣∣∣ λ2π
m∑

n=−m
f̂ (nλ)ϕ(−nλ)

∣∣∣∣∣∣∣ ≤ ‖µλ‖M(T ) sup
t∈T
|ψλ(t)| ≤ C sup

t∈T
|ψλ(t)| (21)

for all λ > 0. Since f̂ ∈ C∞c (R̂), we have f = F−1(f̂ ) ∈ S(R) which decays very fast at |x| −→∞, thus
if we choose λ small enough we obtain

sup
t∈T
|ψλ(t)| ≤ sup

x∈R
|f (x)|+ ε. (22)

This fact together with (20) and (21) implies∣∣∣∣∣ 1
2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ
∣∣∣∣∣ < C sup

x∈R
|f (x)|+ (C + 1)ε.

Since ε > 0 is chosen arbitrary, we obtain the result from theorem 2.10.

The estimate (22) can be proved precisely as following. Since f̂ ∈ S(R̂) we have f ∈ S(R) as well,
thus

sup
x∈R

(2π+ |x|)2|f (x)| ≤ C =⇒ |f (x)| ≤ C

(2π+ |x|)2 for all x ∈R.

For t ∈ T ∼ [0,2π) and n , 0 we have∣∣∣∣∣f ( t − 2πn
λ

)∣∣∣∣∣ ≤ Cλ2(
2π+ |t − 2πn|

)2 ≤
Cλ2(

2π+ 2π|n| − t
)2 ≤

Cλ2

4π2|n|2
.

Hence

|ψλ(t)| ≤
∣∣∣∣∣f ( t

λ

)∣∣∣∣∣+
∑
n,0

∣∣∣∣∣f ( t − 2πn
λ

)∣∣∣∣∣ ≤ sup
x∈R
|f (x)|+ Cλ

2

4π2

∑
n,0

1
n2 = sup

x∈R
|f (x)|+ Cλ

2

24

and thus the result follows when we choose λ small enough.

9. Parseval’s formula also offers an obvious criterion for determining when a functionϕ is the Fourier-
Stieltjes transform of a positive measure. The analog to theorem 2.10 is
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Theorem 2.12. A function ϕ ∈ BC(R̂) is the Fourier-Stieltjes transform of a positive measure on R if
and only if ∫

R̂

f̂ (ξ)ϕ(−ξ) dξ ≥ 0 (23)

for every f ∈ P(R) = {f ≥ 0, f ∈ C∞c (R)}.

Proof. If ϕ = µ̂ for some positive measure µ on R, then Parseval’s formula implies (23) obviously.
Conversely if (23) holds true for all f ∈ P(R), then it is also true for all non-negative functions
{f ∈ L1(R), f̂ ∈ L1(R̂)}.

• Let ζ ∈ C∞c (R) be the standard mollifier, i.e., 0 ≤ ζ ≤ 1, supp ζ ⊂ (−1,1), ζ = 1
2π in a neighbor-

hood of the origin, and
∫
R
ζ(x) dx = 1. For each ε > 0 let ζε(x) = ε−1ζ

(
ε−1x

)
, then

εζε(x) = ζ
(x
ε

)
=⇒ εζ̂ε(ξ) = εζ̂(εξ) =⇒

∫
R̂

εζ̂ε(ξ) dξ = ε
∫
R̂

ζ̂(εξ) dξ = 2πζ(0) = 1

by the Fourier inversion formula. In other words, {εζ̂ε}ε−→∞ forms a summability sequence,
hence for every f̂ ∈ Cc(R̂) ⊂ L1(R̂) we have∥∥∥∥f̂ ∗ (εζ̂ε)− f̂ ∥∥∥∥

L1(R̂)
−→ 0 as ε −→∞. (24)

• For a non-negative f ∈ L1(R)∩C∞(R) with f̂ ∈ Cc(R̂) we have f (x)ζ
(
x
ε

)
= f (εζε) ∈ C∞c (R) and

is non-negative, thus (23) reads∫
R̂

(
f̂ ∗ εζ̂ε

)
(ξ)ϕ(−ξ) dξ ≥ 0 for all ε > 0.

From that and (24) as ε −→∞, (23) is true for non-negative f ∈ L1(R)∩C∞(R) with f̂ ∈ Cc(R̂).

• Finally if f ∈ L1(R) with f̂ ∈ L1(R̂), then let η ∈ C∞c (R̂) be the standard symmetric mollifier,
i.e., 0 ≤ η ≤ 1, supp η ⊂ (−1,1), η = 1 in a neighborhood of the origin, and

∫
R̂
η(ξ) dξ = 2π.

For each ε > 0 let ηε(ξ) = ε−1η
(
ε−1ξ

)
, then

fε = f ∗F−1(εηε) ∈ C∞(R)∩L1(R) and f̂ε(ξ) = f̂ (ξ)η
(ξ
ε

)
∈ Cc(R̂).

The result from the previous step implies∫
R̂

f̂ (ξ)η
(ξ
ε

)
ϕ(−ξ) dξ ≥ 0 for all ε > 0.

As ε −→∞, by the dominated convergence theorem we obtain (23) is true for all non-negative
f ∈ L1(R) with f̂ ∈ L1(R̂).

Going back to our problem, recalling that with the Fejer’s kernel {Kλ}λ>0 we have {λ−1Kλ}λ>0

satisfies λ−1K̂λ −→ δ0 in S′(R̂) and thus (if ϕ is a Schwartz function)

lim
λ−→0

∫
R̂

λ−1K̂λ(ξ)ϕ(−ξ) dξ = ϕ(0) (25)

and then using this fact to proof an identity that theorem 2.10 requires. The identity (25) is indeed
true even if we only have ϕ ∈ BC(R̂) (actually we only need ϕ is continuous), since

1
λ

∫
R̂

K̂λ(ξ)ϕ(−ξ) dξ =
1
λ

∫ λ

−λ

(
1− |ξ |

λ

)
ϕ(−ξ) dξ

=
1
λ

∫ λ

0

(
1− ξ

λ

)(
ϕ(ξ) +ϕ(−ξ)

)
dξ

=
∫ 1

0
(1− η)

(
ϕ(λη) +ϕ(−λη)

)
dη −→ 2ϕ(0)

(∫ 1

0
(1− η) dη

)
= ϕ(0)
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by the dominated convergence theorem. Now we show that∣∣∣∣∣ 1
2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ
∣∣∣∣∣ ≤ 2ϕ(0)

(
sup
x∈R
|f (x)|

)
for f ∈ C∞c (R,C) (26)

then the proof will be complete by theorem 2.10. Let’s consider a real-valued function f ∈ C∞c (R,R),
since K(λx) −→ 1

2π as λ −→ 0 uniformly on compact sets, for given ε > 0 there exists λ0 > 0 small
enough such that for all λ ≤ λ0 then

sup
x∈supp f

∣∣∣∣∣K(λx)− 1
2π

∣∣∣∣∣ ≤ ε =⇒ 1
2π
− ε ≤K(λx) ≤ 1

2π
+ ε for all x ∈ supp(f )

which implies that
f (x)
2π ≤ (K(λx) + ε) sup |f | if f (x) ≥ 0

f (x)
2π ≤ (K(λx)− ε) sup |f | if f (x) ≤ 0

=⇒ f (x) ≤ 2π
(
K(λx) + ε

)
sup |f | for all x ∈R.

In other words we have 2π sup |f |
(
λ−1Kλ(x) + ε

)
−f (x) is a non-negative function which belongs to

C∞(R)∩L1(R) with its Fourier transform belongs to L1(R̂), thus (23) (applying to a bigger class of
functions) reads ∫

R̂

2π sup |f |
(
λ−1K̂λ(ξ) + ε2πδ0

)
ϕ(−ξ) dξ ≥

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ

i.e.,
1

2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ ≤
(
2πεϕ(0) +

∫
R̂

λ−1K̂λ(ξ)ϕ(−ξ) dξ
)

sup |f |.

Let λ −→ 0 and using (25) we obtain

1
2π

∫
R̂

f̂ (ξ)ϕ(−ξ) dξ ≤ ϕ(0) (2πε+ 1)sup
x∈R
|f (x)|.

Let ε −→ 0 and replace f by −f we obtain (26), after applying the same argument to the real part
and the imaginary part of a complex-valued function f .

10. An analog of theorem 2.11 but with positive measure in M(T ) is:

Theorem 2.13. A function ϕ ∈ C(R̂) is the Fourier-Stieltjes transform of a positive measure if and only
for all λ > 0, {ϕ(λn)}n∈Z are the Fourier-Stieltjest coefficients of a positive measure on T .

Proof. If ϕ = µ̂ for some positive measure µ ∈ M(R) then ϕ(n) = µ̂(n) = µ̂
T

(n) for all n ∈ Z, and
‖µ

T
‖M(T ) ≤ ‖µ‖M(R). Let’s denote by µλ the measure in M(R) satisfying∫

R

f (x) dµλ(x) =
∫
R

f (λx) dµ(x) for all f ∈ C0(R)

then it is clear that µλ is positive and ‖µλ‖M(R) = ‖µ‖M(R) for all λ > 0, and µ̂λ(ξ) = µ̂(λξ) = ϕ(λξ)
for ξ ∈ R̂. Thus after transferring to a measure in M(T ) we obtain

F
[
(µλ)

T

]
(n) = µ̂λ(n) = ϕ(λn)

thus {ϕ(λn)}n∈Z are the Fourier-Stieltjes coefficients of a positive measure (µλ)
T
∈ M(T ) with

‖(µλ)
T
‖M(T ) ≤ ‖µ‖M(R).

Conversely, if for all λ > 0 we have {ϕ(λn)}n∈Z are the Fourier-Stieltjes coefficients of a positive
measure µλ ∈M(T ), i.e., ϕ(λn) = µ̂λ(n) with µλ ≥ 0 in M(T ), then clearly ϕ(0) = µ̂λ(0) = ‖µλ‖M(T )
for all λ > 0. By theorem 2.11 there exists a measure µ ∈ M(R) such that ϕ = µ̂. We have left to
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show that µ ≥ 0. Let’s follow the procedure above for the ”only if” part. Let νλ ∈ M(R) be the
measure satisfying ∫

R

f (x) dνλ(x) =
∫
R

f (λx) dµ(x) for all f ∈ C0(R)

then it is clear that ‖νλ‖M(R) = ‖µ‖M(R) for all λ > 0, and ν̂λ(ξ) = µ̂(λξ) = ϕ(λξ) for ξ ∈ R̂. Thus
after transferring to a measure in M(T ) we obtain

F [(νλ)
T

] (n) = ν̂λ(n) = ϕ(λn) = µ̂λ(n)

for all n ∈ Z. The uniqueness of Fourier-Stieltjes series in M(T ) implies that µλ ≡ (νλ)
T
≥ 0, and

thus νλ ≥ 0. Hence∫
R

f (x) dνλ(x) =
∫
R

f (λx)dµ(x) ≥ 0 for all f ∈ C0(R), f ≥ 0.

From that we obtain µ ≥ 0 and the proof is complete.

11. A complex-valued function ϕ defined on R̂ is said to be ”positive definite” if, for every choice of
ξ1, . . . ,ξm ∈ R̂ and complex numbers z1, . . . , zm we have∑

1≤j,k≤m
ϕ(ξj − ξk)zjzk ≥ 0.

Immediate consequences of this condition are ϕ(−ξ) = ϕ(ξ) and |ϕξ)| ≤ ϕ(0) for all ξ ∈ R̂ if ϕ is
positive definite.

Theorem 2.14 (Bochner). A function ϕ defined on R̂ is a Fourier-Stieltjes transform of a positive mea-
sure if and only if it is positive definite and continuous.

Proof. If ϕ = µ̂ for some µ ≥ 0 in M(R), then clearly ϕ is continuous, and for ξ1, . . . ,ξm ∈ R̂ and
complex numbers z1, . . . , zm we have

∑
1≤j,k≤m

ϕ(ξj − ξk)zjzk =
∑

1≤j,k≤m

(∫
R

e−iξjxeiξkx dµ(x)
)
zjzk =

∫
R

∣∣∣∣∣ ∑
1≤j≤m

zje
−iξjx

∣∣∣∣∣2 dµ(x) ≥ 0.

Conversely, if ϕ is positive definite then for any λ > 0 we have {ϕ(λn)}n∈Z is a positive definite
sequence. By Herglotz’s theorem, there exists a positive measure µλ ∈ M(T ) such that ϕ(λn) =
µ̂λ(n) for all n ∈Z, which implies that ϕ = µ̂ for some positive measure µ ∈M(R).

12. Let µ ∈M(R), let’s define the measure µ# ∈M(R) by

µ#(E) = µ(−E) for every Borel set E ⊂R

or equivalently∫
R

f (x) dµ#(x) =
∫
R

f (−x) dµ(x) for every f ∈ C0(R) (or BC(R)).

It is clear that µ̂#(ξ) = µ̂(ξ) for all x ∈ R̂, thus �µ ∗µ#(ξ) = |µ̂(ξ)|2 for all x ∈ R̂. A measure µ ∈M(R)
is continuous if µ({x}) = 0 for every t ∈R, equivalently, µ is continuous if

lim
η−→0

∫ x+η

x−η
|dµ| = 0 for every x ∈R.

Theorem 2.15. Every measure µ ∈M(R) can be decomposed to a sum µ = µc+µd where µc is continuous
and µd is discrete.

31



If µ ∈M(R) is a continuous measure then for any ν ∈M(R), from the formula

(µ ∗ ν)(E) =
"

R
2
µ(E − s) dν(s)

we deduce that µ ∗ ν is continuous. Since δa ∗ δb = δa+b, if µ =
∑n
j=1 ajδsj and ν =

∑n
j=1 bjδtj then

µ ∗ ν =
n∑

j,k=1

ajbkδsj+tk .

Let µ = µc +µd and µ# = µ#
c +µ#

d be the decompositions to continuous and discrete parts, we have

µ ∗µ# =
(
µc ∗µ#

c +µc ∗µ#
d +µd ∗µ#

c

)
︸                           ︷︷                           ︸

(µ∗µ#)c

+
(
µd ∗µ#

d

)
.

Assume that µd =
∑n
j=1 ajδj , then µ#

d =
∑n
j=1 ajδ−sj and thus µ ∗ µ#({0}) =

∑n
j=1 |aj |2. Thus we have

proved the following:

Lemma 2.16. Let µ ∈M(R), then
µ ∗µ#{0} =

∑
x∈R
|µ({x})|2.

In particular, µ is continuous if and only if (µ ∗µ#)({0}) = 0.

13. An analog of Wiener’s theorem but with measures in M(R) is the following:

Theorem 2.17. Let µ ∈M(R), then the discrete part of µ can be recovered by

µ({x}) = lim
λ−→∞

1
2λ

∫ λ

−λ
µ̂(ξ)eiξx dξ.

As a consequence, we have ∑
x∈R
|µ({x})|2 = lim

λ−→∞

1
2λ

∫ λ

−λ
|µ̂(ξ)|2 dξ.

In particular, a necessary and sufficient condition for the continuity of µ is

lim
λ−→∞

1
2λ

∫ λ

−λ
|µ̂(ξ)|2 dξ = 0.

Proof. For a fixed x ∈R, let’s consider

ϕλ(y) =
1

2λ

∫ λ

−λ
eiξ(x−y) dξ =⇒ sup

y∈R
|ϕλ(y)| ≤ 1 and lim

λ−→0
ϕλ(y) = 0 uniformly away from x.

Let ν = µ− µ({x})δx then ν ∈M(R) with ν({x}) = 0, which implies |ν|({x}) = 0. Regard ν as a linear
functional acting on BC(R), by the dominated convergence theorem we have〈

ϕλ(·),ν
〉

=
∫
R

ϕλ(y) dν(y) −→ 0 as λ −→∞. (27)

By Fubini’s theorem for (ξ,y) 7−→ eiξ(x−y)χ[−λ,λ](ξ) ∈ L1
(
(R,m)× (R,dµ)

)
we obtain〈

ϕλ(·),ν
〉

=
〈
ϕλ(·),µ

〉
−µ({x})

=
∫
R

(
1

2λ

∫ λ

−λ
eiξ(x−y) dξ

)
dµ(y)−µ({x})

=
1

2λ

∫ λ

−λ

(∫
R

e−iξy dµ(y)
)
eiξx dξ −µ({x}) =

1
2λ

∫ λ

−λ
µ̂(−ξ)eiξx dξ −µ({x}).
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Thus we have

〈
ϕλ(·),ν

〉
=

1
2λ

∫ λ

−λ
µ̂(−ξ)e−iξx dξ −µ({x}) =

1
2λ

∫ λ

−λ
µ̂(ξ)eiξx dξ −µ({x})

and together with (27) we obtain

µ({x}) = lim
λ−→∞

1
2λ

∫ λ

−λ
µ̂(ξ)eiξx dξ.

Apply this formula for µ being replaced by µ ∗µ# we obtain

(
µ ∗µ#

)
({0}) = lim

λ−→∞

1
2λ

∫ λ

−λ
|µ̂(ξ)|2 dξ =

∑
x∈R
|µ({x})|2

and thus the proof is complete.

As a consequence, since the Fejer’s kernel Kλ ∈ L1(R) and K̂λ ∈ L1(R̂), we can use the Parseval’s
formula to deduce that

(Kλ ∗µ) (x) =
∫
R

Kλ(x − y) dµ(y)

=
1

2π

∫
R̂

F
[
Kλ(x − ·)

]
(ξ)µ̂(−ξ) dξ

=
1

2π

∫ λ

−λ

(
1− |ξ |

λ

)
µ̂(−ξ)e−iξx dξ =

1
2π

∫ λ

−λ

(
1− |ξ |

λ

)
µ̂(ξ)eiξx dξ.

Thus ∫
R

λ−1Kλ(x − y) dµ(y) =
1

2πλ

∫ λ

−λ

(
1− |ξ |

λ

)
µ̂(ξ)eiξx dξ.

By the same argument, since λ−1Kλ(x − y) −→ 0 uniformly on compact set away from x, and
λ−1Kλ(0) = 1

2π , send λ −→∞ we obtain

1
2π
µ({x}) = lim

λ−→∞

1
2πλ

∫ λ

−λ

(
1− |ξ |

λ

)
µ̂(ξ)eiξx dξ =⇒ µ({x}) = lim

λ−→∞

1
λ

∫ λ

−λ

(
1− |ξ |

λ

)
µ̂(ξ)eiξx dξ

Together with the above theorem, we obtain:

Theorem 2.18. Let µ ∈M(R), then

µ({x}) = lim
λ−→∞

1
λ

∫ λ

−λ

(
1− |ξ |

λ

)
µ̂(ξ)eiξx dξ = lim

λ−→∞

1
λ2

∫ λ

−λ
|ξ |µ̂(ξ)eiξx dξ.

2.2 Fourier transforms of distributions

We will recall general fact about Schwartz functions in high dimensions even though later on we will
only focus on the real line. We denote by D(Ω) the space of smooth functions C∞c (Ω) with compact
support in Ω. A distribution in D′(Ω) is a linear functional on D(Ω), equipped with the weak∗ topology.

1. (Schwartz space) For any non-negative integer N , any multi-index α and f : Rn −→ C we define:

‖f ‖(N,α) = sup
x∈Rn

(1 + |x|)N |∂αf (x)| and S(Rn) =
{
f ∈ C∞(Rn,C) : ‖f ‖(N,α) <∞ for allN,α

}
.

The is a metrizable topology on S(Rn) which makes S(Rn) a Fréchet space over C.

Lemma 2.19. If f ∈ S(Rn) then ∂αf ∈ Lp(Rn) for all α and all p ∈ [1,∞]. Indeed ∂αf ∈ C0(Rn) for all
multi-index α, consequently ∂αf is uniformly continuous.
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Proof. For any multi-index α, p ∈ (1,∞) and N ∈N then

|∂αf (x)| ≤
‖f ‖N,α

(1 + |x|)N
=⇒

∫
R
n
|∂αf (x)|p dx ≤ ‖f ‖pN,α

∫
R
n

dx

(1 + |x|)Np
<∞

if we choose N > n
p . The case p =∞ is trivial since (1 + |x|) ≥ 1. For ε > 0, we have

{x ∈Rn : |∂αf (x)| ≥ ε} ⊂
{
x ∈Rn :

‖f ‖(1,α)

1 + |x|
≥ ε

}
=

{
x ∈Rn : |x| ≤ ε−1‖f ‖(1,α) − 1

}
.

The latter set is compact in R
n, which implies the result.

Proposition 2.20. S is a Fréchet space with the topology defined by the norms ‖ · ‖(N,α).

Proof. The topology on S is generated by a countable sequence of seminorms, thus it is locally
convex topological space, Hausdorff and metrizable with an translation-invariant metric. The
only nontrivial point we need to check is completeness. If {fk} is a Cauchy sequence in S then
‖fk − kj‖(N,α) −→ 0 as j,k −→∞ for all N,α. In particular, for each fixed α, take N = 0 then

sup
xRn

∣∣∣∂αfj (x)−∂αfk(x)
∣∣∣ = ‖fj − fk‖(0,α) −→ 0

as j,k −→∞, thus for each x ∈ Rn we have {∂αfk(x)}∞k=1 is a Cauchy sequence in C, thus it defines
gα(x) = limk−→∞∂

αfk(x). To each ε > 0 corresponds N (ε) ∈N such that∣∣∣∂αfk(x)−∂αfj (x)
∣∣∣ < ε for all k, j ≥N (ε),x ∈Rn.

Let j −→∞, we deduce that

|∂αfk(x)− gα(x)| < ε for all k ≥N (ε),x ∈Rn.

In other words ∂αfk −→ gα uniformly on R
n. Since ∂αfk ∈ S(Rn) ⊂ C0(Rn) and C0(Rn) is closed

in BC(Rn) with the uniform metric, it is obvious that g ∈ C0(Rn). Denoting by ej the vector
(0, . . . ,1, . . . ,0) with the 1 in the jth position, we have

fk(x+ tej )− fk(x) =
∫ t

0
∂ej fk(x+ sej ) ds =⇒ g0(x+ tej )− g0(x) =

∫ t

0
gej (x+ sej ) ds

by letting k −→∞. The fundamental theorem of calculus implies that gej = ∂ejg0, and an induction
on |α| then yields gα = ∂αg0 for all α, thus g ∈ S(Rn) follows easily. Finally recall that

sup
x∈Rn

(1 + |x|)N
∣∣∣∂αfj (x)−∂αg0(x)

∣∣∣ ≤ ‖fj − fk‖(N,α) + sup
x∈Rn

(1 + |x|)N |∂αfk(x)−∂αg0(x)|

for all k ∈N. For each ε > 0, choose j,k large such that ‖fj − fk‖(N,α) <
ε
2 , then let k −→∞ we obtain

‖fk − g0‖(N,α) −→ 0.

Another useful characterization of S is the following.

Proposition 2.21. If f ∈ C∞(Rn), then f ∈ S iff xβ∂αf is bounded for all multi-indices α,β iff ∂α(xβf )
is bounded for all multi-indices α,β.

Proof. Obviously |xβ | ≤ (1 + |x|)N for |β| ≤ N . On the other hand,
∑n
j=1 |xj |N is strictly positive on

the unit sphere |x| = 1, so it has a positive minimum δ there (note that δ ≤ 1). If follows that∑n
j=1 |xj |N ≥ δ|x|N for all x since both sides are homogeneous of degree N , and hence

(1 + |x|)N ≤ 2N
(
1 + |x|N

)
≤ 2N

1 + δ−1
n∑
j=1

|xj |N
 ≤ 2Nδ−1

∑
|β|≤N

|xβ |.

This establishes the first equivalence. The second one follows from the fact that each ∂α(xβf ) is a
linear combination of terms of the from xγ∂δf and vice versa by the product rule.

34



2. A very useful fact we need later is that C∞c (Ω) is dense in Lp(Ω) for any open set Ω ⊂ R
n and any

1 ≤ p < ∞. Since C∞c (Rn) ⊂ S(Rn) ⊂ Lp(Rn) for all 1 ≤ p ≤ ∞, we deduce that S(Rn) is dense in
Lp(Rn) for 1 ≤ p <∞. The result fails for L∞, however recall that L∞ is the dual space of L1 (with
respect to norms on these spaces), if we denote σ (L∞,L1) to be the weak∗ topology on L∞, then we
have:

Theorem 2.22. The Schwartz space S(Rn) is dense in L∞(Rn) with respect to the weak∗ topology σ (L∞,L1).
That is, for any f ∈ L∞(Rn), there exists a sequence of fn ∈ S(Rn) such that

lim
n−→∞

∫
R
n
fn(x) φ(x) dx =

∫
R
n
f (x)φ(x) dx for every φ ∈ L1(Rn).

Proof. Take η ∈ C∞(Rn) with 0 ≤ η ≤ 1 and ‖η‖L1 = 1, define ηn(x) = nη(nx) for all n = 1,2, . . .. For
each n let ξn ∈ C∞c (Rn) such that 0 ≤ ξ ≤ 1, supp ξn ⊂ B(0,n+ 1) and ξ ≡ 1 on B(0,n). Let’s

fn = (f ∗ ηn)ξn satisfies ‖fn‖L∞ ≤ ‖f ∗ ηn‖L∞ ≤ ‖f ‖L∞‖ηn‖L1 = ‖f ‖L∞ .

It is easy to see that since f ∈ L∞(Rn), f ∗ ηn ∈ C∞(R) with Dα(f ∗ ηn) = f ∗Dαηn is bounded for all
multi-index α, hence fn ∈ S(Rn). Since f ∗ ηn −→ f a.e as n −→∞, we have fn −→ f a.e as n −→∞
as well. Now for any φ ∈ L1(Rn) we have fnφ −→ f φ a.e and |fnφ| ≤ ‖f ‖1φ ∈ L1(Rn), thus the
dominated convergence theorem implies

lim
n−→∞

∫
R
n
fn(x)φ(x) dx =

∫
R
n
f (x)φ(x) dx

and the proof is complete.

3. A tempered distribution on R
n is a continuous linear functional on S(Rn), denoted by S′(Rn) =

L(S(Rn),C). It comes equipped with the weak∗ topology, that is, the topology of point-wise conver-
gence in S. By using Hölder inequality with S ⊂ Lp(Rn) for all 1 ≤ p ≤∞, every locally Lp function
can be identified with a tempered distribution in S′(Rn), by the natural pairing

f ∈ Lploc(Rn) 7−→Λf with 〈φ,Λf 〉 =
∫
R
n
φ(x)f (x) dx.

Thus Lp(Rn) ⊂ S′(Rn) for all 1 ≤ p ≤ ∞ (after identifying as distribution). The same is true for the
space of finite Borel measure M(Rn) as well, by the pairing:

µ ∈M(Rn) 7−→Λµ with 〈φ,Λµ〉 =
∫
R
n
φ(x)dµ(x).

4. For a tempered distribution µ ∈ S′(Rn), we define its Fourier transform µ̂ ∈ S′(R̂n) by

〈ϕ̂, µ̂〉 = 〈ϕ,µ〉 for all ϕ ∈ S(Rn).

We denote by FLp = F [Lp(Rn)].

Theorem 2.23. For f ∈ FLp, let’s define ‖f̂ ‖FLp = ‖f ‖Lp , then it defines (FLp,‖ · ‖FLp ) as a Banach space
for all 1 ≤ p ≤∞.

Proof. Since each distribution f̂ acting as Λf̂ on S(Rn) by
〈
φ̂, f̂

〉
=

〈
φ,f

〉
=

∫
R
n φ(x)f (x) dx, it is clear

that ‖f̂ ‖FLp = 0 iff f = 0 a.e, which implies
〈
φ̂, f̂

〉
for allφ ∈ S(R̂n), i.e., f̂ = 0. Thus (FLp,‖ · ‖FLp ) is a

normed space and its completeness follows from the completeness of Lp(Rn) for all 1 ≤ p ≤∞.

Recall that for 1 ≤ p <∞, Lp
∗

is the dual space of Lp where 1
p + 1

p∗ = 1, notably
(
L1

)∗
= L∞ but not

the inverse. The same things hold true for FLp as well.

Theorem 2.24. For 1 ≤ p <∞,
(
FLp

∗
,‖ · ‖FLp∗

)
is the dual space of (FLp,‖ · ‖FLp ) where 1

p + 1
p∗ = 1.
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Proof. Let Λ : (FLp,‖ · ‖FLp ) −→ C be a linear bounded functional, we have the following diagram:

(Lp,‖ · ‖Lp ) (FLp,‖ · ‖FLp )

C

-F

H
HHH

HHj
Λ◦F ?

Λ =⇒ Λ ◦F ∈ (Lp)∗ .

Using the duality of Lp when 1 ≤ p <∞, there exists a unique fΛ ∈ Lp
∗

with 1 < p∗ ≤∞ such that

Λ(ϕ̂) =
∫
R
n
ϕ(x)fΛ(x) dx for every ϕ ∈ Lp(Rn)

and furthermore ‖fΛ‖Lp∗ = ‖Λ ◦F‖(Lp)∗ . By an application of Hahn-Banach theorem we have

‖Λ‖(FLp)∗ = sup
‖ϕ̂‖FLp=1

∣∣∣Λϕ̂∣∣∣ = sup
‖ϕ‖Lp=1

∣∣∣(Λ ◦F)ϕ
∣∣∣ = ‖Λ ◦F‖(Lp)∗ = ‖fΛ‖Lp∗ .

Thus the mapping Φ : (FLp)∗ −→ FLp
∗

maps Λ 7−→ f̂Λ is a linear isometry. We only need to show
that Φ is surjective, indeed for any f ∈ Lp∗ , we can define Λ : FLp −→ C by

Λ(ϕ̂) =
∫
R

ϕ(x)f (x) dx

It is clear that Λ is linear and bounded since

|Λ(ϕ̂)| ≤
∫
R

|φ(x)f (x)| dx ≤ ‖f ‖Lp∗ ‖ϕ‖Lp = ‖f̂ ‖FLp∗ ‖ϕ̂‖FLp =⇒ ‖Λ‖(FLp)∗ ≤ ‖f̂ ‖FLp∗ .

By the duality of (Lp)∗ = Lp
∗

(the uniqueness part) we obtain Φ(Λ) = f̂ . Thus Φ is a linear surjective
isometry, thus it is an isomorphism between two spaces and the proof is complete.

From this result, by pairing in FLp
∗

and FLp we means (for 1 ≤ p <∞)

〈
ϕ̂, f̂

〉
(FLp ,FLp∗ )

=
∫
R
n
f (x)ϕ(x) dx.

5. (Support of distributions) Suppose Λ ∈ D′(Ω), if O is an open subset of Ω and if Λφ = 0 for
every φ ∈ D(O), we say that Λ vanishes in O. Let W be the union of all open sets O ⊂Ω in which
Λ vanishes, we define the complement Ω\W to be the support of Λ. In case Ω = R

n and Λ is a
tempered distribution, we can extend the notion of support in the same way:

Definition 2.25. A tempered distribution Λ ∈ S′(Rn) vanishes on an open set O ⊂ R
n, if 〈φ,Λ〉 = 0 for

all φ ∈ S(Rn) with compact support contained in O.

Proposition 2.26. If Λ ∈ S′(Rn) vanishes on {O}α∈A where Oα is open, then Λ vanishes on
⋃
α∈AOα .

Proof. Let Γ = {Oα}α∈A where Λ vanishes in Oα . Let {ϕj }∞j=1 be a partition of unity subordinate to
{Oα}α∈A. If f ∈D(W ) then supp f only intersects with finitely many Oαj , i.e., f =

∑∞
j=1 f ϕj where

only finitely many terms of this sum are different from 0. Hence Λf =
∑

finiteΛ(f ϕj ) = 0 since
supp(f ϕj ) ⊂ Oαj .

Thus we can define the support supp(Λ) of Λ ∈ S′(Rn) is the complement of the largest open set
O ⊂ R

n on which Λ vanishes. In other words, Λ ∈ S′(Rn) can be viewed as a distribution on D(Rn)
simply by its restriction to D(Rn), where its support is already well-defined, and then take:

supp(Λ) := supp
(
Λ|D(Rn)

)
.

The definition of supp Λ implies that if φ ∈ S(Rn) with supp φ is compact and supp φ∩supp Λ = ∅
then 〈φ,Λ〉 = 0. The same still true even if φ doesn’t have compact support.
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Proposition 2.27. If φ ∈ S(Rn) has supp φ∩ supp Λ = ∅ then 〈Λ,φ〉 = 0.

Proof. Let η ∈ C∞c (Rn) with supp η ⊂ B(0,1), ‖η‖L1 = 1 and 0 ≤ η ≤ 1 on R
n with η(0) = 1. We claim

that
η(λx)φ(x) −→ φ(x) in S(Rn) as λ −→ 0.

In deed, for any N ∈N and α , 0 we have

‖η(λx)φ(x)−φ(x)‖N,α = sup
x∈Rn

(1 + |x|)N
∣∣∣∂α (φ(x)(η(λx)− 1))

∣∣∣
= sup
x∈Rn

(1 + |x|)N
∣∣∣∣∣∣∣∣
∑
β≤α

cαβD
α−βφ(x)Dβ

(
η(λx)− 1

)∣∣∣∣∣∣∣∣
≤

∑
β≤α

(
cαβ‖φ‖N,α−β

)
λ|β|

(
sup
x∈Rn

∣∣∣∣(Dβη) (λx)
∣∣∣∣)

≤
∑
β≤α

(
cαβ‖φ‖N,α

)
λ|β|‖η‖0,β −→ 0 as λ −→ 0.

The case α = 0 we have

‖η(λx)φ(x)−φ(x)‖N,0 = sup
x∈Rn

(1 + |x|)N
∣∣∣(φ(x)(η(λx)− 1))

∣∣∣ ≤ ‖φ‖N,0 (sup
x∈Rn

∣∣∣η(λx)− 1
∣∣∣) .

By the fundamental theorem of calculus, for any x ∈Rn, let γ(t) = t(λx), we have

η(λx)− 1 = η(λx)− η(0)

= (η◦γ)(1)− (η◦γ)(0) =
∫ 1

0
∇η(γ(s)) ·γ ′(s) ds

and thus ∣∣∣η(λx)− 1
∣∣∣ ≤ ∫ 1

0
‖∇η‖L∞ |γ ′(s)| ds ≤

λ
2
‖∇η‖L∞ −→ 0

uniformly in x as λ −→ 0. Thus η(λx)φ(x) −→ φ(x) in S(Rn) as λ −→ 0. Clearly supp(η(λ·)φ) ⊂
supp φ ⊂ R

n\supp(Λ), thus 〈Λ,η(λ·)φ〉 = 0 for all λ > 0 and hence as a linear functional on S(R)
we have

〈
φ,Λ

〉
= limλ−→∞

〈
Λ,η(λ·)φ

〉
= 0.

Let’s consider n = 1 from now on.

6. So far, we have studied that:

(a) If Λ is (identified with) a summable function then Λ̂ is (identified with) a function in C0(R)
by Riemann-Lebesgue lemma.

(b) If If Λ is (identified with) a finite complex Radon measure inM(R) then Λ̂ is (identified with)
a uniformly continuous bounded function.

(c) If Λ is (identified with) a Lp(Rn) function with 1 ≤ p ≤ 2 then Λ̂ is (identified with) a function
in Lq(R̂) with p−1 + q−1 = 1.

Let’s pay attention to FL∞ as the dual space of FL1. Every function f ∈ L1(R) corresponds to a
tempered distribution f̂ ∈ S′(R̂) acting by

f̂ : S(R̂) −→ C maps ϕ̂ 7−→
〈
ϕ̂, f̂

〉
=

〈
ϕ,f

〉
=

∫
R

φ(x)f (x) dx.

On the other hand, f̂ can be seen as a linear function acting on FL1 by

f̂ : FL1 −→ C maps φ̂ 7−→
〈
φ̂, f̂

〉
FL1,FL∞

=
〈
φ,f

〉
L1,L∞ =

∫
R

φ(x)f (x) dx.

Their actions are identical on S(R̂), thus we have extended f̂ as a linear function on S(R̂) onto a
larger space FL1.
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7. We will extend the notion of support to linear functional FL∞. Let’s recall the standard construc-
tion of mollifiers, we pick a function η ∈ C∞c (R) with supp η ⊂ [−1,1], ‖η‖L1 = 1 and 0 ≤ η ≤ 1 on
R, we then define

ηn(x) = nη(nx) has ηn ∈ C∞c (R), supp ηn ⊂
[
−1
n
,
1
n

]
, ‖ηn‖L1 = 1.

Some facts about {ηn}∞n=1:

• In the sense of (tempered or D) distribution, we have ηn −→ δ0 in S′(R) or D′(R) as n −→∞.

• If ψ ∈D(Rn) then ψ ∗ ηn −→ ψ in D(R) as n −→∞.

• If Λ ∈D′(R) then Λ ∗ ηn −→Λ in D′(R) as n −→∞.

Since {ηn}∞n=1 ⊂D(R) ⊂ S(R), we have
{
η̂n

}∞
n=1 ⊂ S(R) as well, and it is obvious that η̂n −→ δ̂0 = 1 in

D′(R). Furthermore

Proposition 2.28. We have η̂n −→ δ̂0 = 1 a.e.

Lemma 2.29. Let η ∈ L1(Rn) with c =
∫
R
n η(x) dx, then for any g ∈ L1(Rn). For λ > 0 let’s define

ηλ(x) = 1
λn η( xλ ) then g ∗ ηλ −→ cg in L1(Rn) as λ −→ 0.

Proof. Obviously
∫
R
n ηλ(x) dx =

∫
R
n η(x) dx. For each x ∈Rn we have

(g ∗ ηλ)(x)− cg(x) =
∫
R
n

(
g(x − y)− g(x)

)
ηλ(y) dy =

∫
R
n

(
g(x −λy)− g(x)

)
η(y) dy

and thus by using Fubini’s theorem∫
R
n

∣∣∣(g ∗ ηλ)(x)− cg(x)
∣∣∣ dx ≤ ∫

R
n

(∫
R
n
|g(x −λy)− g(x)| dx

)
|η(y)| dy

≤
∫
R
n
‖τλyg − g‖L1 |η(y)| dy −→ 0

as λ −→ 0 by dominated convergence theorem.

Theorem 2.30. If ϕ ∈ L1(R) with supp(ϕ̂)∩ supp(f̂ ) = ∅ then〈
ϕ̂, f̂

〉
FL1,FL∞

= 0.

8. S(R) is an algebra under point-wise multiplication, therefore we can define the product ϕν of a
function ϕ ∈ S(R) and a distribution ν ∈ S′(R) by

〈φ,ϕν〉 = 〈φϕ,ν〉 for all ϕ ∈ S(R).

It is clear that supp (ϕν) ⊂ supp ϕ ∩ supp ν.

2.3 Pseudo-measures

1. If µ ∈ M(R̂), it can be identified with FL∞ by setting f (x) = µ̂(−x) ∈ L∞(R) then by Parseval’s
formula and the fact that ̂̂ϕ(x) = 2πϕ(−x) for ϕ ∈ S(R) we have〈

ϕ̂,µ
〉

=
∫
R̂

ϕ̂(ξ)dµ(ξ) =
∫
R

ϕ(−x)µ̂(x) dx =
∫
R

ϕ(x)f (x) dx

for any ϕ ∈ S(R), note that ϕ̂ ∈ C0(R̂) by Riemann-Lebesgue lemma. Thus µ = f̂ ∈ FL∞ as distribu-

tions (recall that F : S −→ S is an is isomorphism). Thus we can conclude that M(R̂) ⊂ FL∞.

The elements of FL∞ are commonly referred to as pseudo-measures. Note thatM(R̂) is a relatively
small part of FL∞; for instance, if ϕ ∈ L∞(R) is not uniformly continuous then ϕ̂ cannot be a
measure.
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2. (Convolutions of pseudo-measures) We take something which we have proved for measures, as a
definition for the larger class of pseudo-measures.

Definition 2.31. If f ,g ∈ L∞(R), then f̂ , ĝ ∈ FL∞ ⊂ S′(R̂) as tempered distributions. We define the
convolution f̂ ∗ ĝ of pseudo-measures f̂ and ĝ to be the pseudo-measure f̂ g, namely

f̂ ∗ ĝ = f̂ g.

Note that this definition is consistent, in the sense that if f̂ , ĝ happen to be measures, then f̂ ∗ ĝ
is their (measure theoretic) convolution. Indeed if f ,g ∈ L∞(Rn) such that f̂ = µ and ĝ = ν, then
f (x) = µ̂(−x) and g(x) = ν̂(−x). Recall that µ̂ ∗ ν(x) = µ̂(x)ν̂(x), by Parseval’s formula and F2ϕ(x) =
2πϕ(−x) for ϕ ∈ S(R) we have

〈ϕ̂,µ ∗ ν〉 =
∫
R̂

ϕ̂(ξ)d(µ ∗ ν) =
∫
R

ϕ(−x)µ̂(x)ν̂(x) dx =
∫
R

ϕ(x)(f g)(x) dx = 〈ϕ,f g〉 = 〈ϕ̂, f̂ g〉.

3. We will extend some results about supports of distribution to FL∞. First of all, if f ∈ L∞(R) and
g ∈ S(R), then ĝ ∈ S(R̂) and thus the convolution f̂ ∗ ĝ should be identical to the old definition of
convolution between distribution and test function (as a function)(

f̂ ∗ ĝ
)
(ξ) =

〈
f̂ , τξRĝ

〉
.

It follows from (Λ ∗φ)(x) = 〈Λ, τxφ̃〉. We check that this actually agrees with our definition above.

Proposition 2.32. Let f ∈ L∞(R) and g ∈ L1(R) ∩ L∞(R) then f g ∈ L1(R) ∩ L∞(R), thus we have
f̂ ∗ ĝ = F(f g) is a function in C0(R), thus it makes sense to talk about its value at one point, and(

f̂ ∗ ĝ
)
(ξ) =

〈
f̂ , τξRĝ

〉
FL∞,FL1 .

Proof. If f ∈ S(R) first, we can use the Fourier inversion formula for f (x) to deduce that

f̂ g(ξ) =
∫
R

f (x)g(x)e−2πiξx dx

=
∫
R

(∫
R̂

f̂ (η)e2πiηx dη

)
g(x)e−2πiξx dx

=
∫
R̂

f̂ (η)
(∫

R

g(x)e−2πi(ξ−η)x dx

)
dη =

∫
R̂

f̂ (η)ĝ(ξ − η) dη =
〈
f̂ , τξRĝ

〉
FL∞,FL1 .

Now using theorem 2.22 we can extend the result to all f ∈ L∞(R). More precisely, let {fn} ⊂ S(R)
such that fn

∗
⇀ f in L∞(R) with ‖fn‖L∞ ≤ ‖f ‖L∞ , and fn −→ f a.e. Since fn ∈ S(R) we first have

f̂ng(ξ) =
〈
f̂n, τξRĝ

〉
FL∞,FL1 for all n ∈N. (28)

By weak∗ convergence of fn
∗
⇀ f , we have

lim
n−→∞

∫
R

fn(x)g(x)e−iξx dx =
∫
R

f (x)g(x)e−iξx dx =⇒ lim
n−→∞

f̂ng(ξ) = f̂ g(ξ) (29)

for all ξ ∈ R̂. On the other hand f̂n
∗
⇀ f̂ in σ (FL∞,FL1), since for any φ ∈ L1(R) then

lim
n−→∞

〈
f̂n, φ̂

〉
FL∞,FL1 = lim

n−→

∫
R

(fn)(x)φ̃(x) dx =
∫
R

(fn)(x)φ̃(x) dx =
〈
f̂ , φ̂

〉
FL∞,FL1 . (30)

Replace φ̂ by τξRĝ in (30) and using (28), (29) we obtain the result.
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Corollary 2.33. If f ∈ L∞(R) and g ∈ L1 ∩L∞(R) then in terms of support of distribution we have

supp
(
f̂ ∗ ĝ

)
⊆ supp

(
f̂
)

+ supp(ĝ) .

Proof. We have
(f̂ ∗ ĝ)(ξ) =

〈
f̂ , τξRĝ

〉
FL∞,FL∞

.

Since ĝ ∈ C0(R) it makes sense to talk about the classical meaning of the support of ĝ, observe that

η < ξ − supp ĝ =⇒ ξ −n < supp ĝ =⇒ ĝ(ξ − η) = 0 =⇒ τξRĝ(ξ − η) = 0.

Thus supp
(
τξRĝ

)
⊂ ξ−supp ĝ. Consequently, if ξ < supp ĝ+supp f̂ then (ξ − supp ĝ)∩supp f̂ = ∅,

thus
supp

(
τξRĝ

)
∩ supp f̂ = ∅ ⇐⇒ (f̂ ∗ ĝ)(ξ) =

〈
f̂ , τξRĝ

〉
FL∞,FL∞

= 0

by theorem 2.30. From that we obtain supp (f̂ ∗ ĝ) ⊂ supp f̂ + supp ĝ.

Indeed it is still true in the general case f ,g ∈ L∞(R).

Theorem 2.34. If f ,g ∈ L∞(R) then in terms of support of distribution we have

supp
(
f̂ ∗ ĝ

)
⊆ supp

(
f̂
)

+ supp(ĝ) .

Proof. Let φ ∈ S with φ̂ has compact support disjoint from supp f̂ + supp ĝ, we will show that
〈f̂ g, φ̂〉FL∞,FL1 = 0. Observe that〈

f̂ g, φ̂
〉
FL∞,FL1 =

∫
R

f (x)g(x)φ̃(x) dx =
〈
f̂ , ̂̃gφ〉

FL∞,FL1 .

After identifying with distribution, ̂̃gφ can be seen as the convolution of two pseudo-measures

̂̃gφ = ̂̃g ∗ φ̂
and thus corollary 2.33 can be applied to deduce that

supp
(̂
g̃ ∗ φ̂

)
⊂ supp ̂̃g + supp ϕ̂ = −supp ĝ + supp ϕ̂.

We claim that supp
(̂
g̃ ∗ φ̂

)
∩ supp f̂ = ∅, since otherwise there exists ξ ∈ supp f̂ , η ∈ supp ϕ̂ and

ζ ∈ supp ĝ such that

ξ = η − ζ =⇒ η = ξ + ζ ∈ supp ϕ̂ ∩
(
supp f̂ + supp ĝ

)
= ∅

which is a contradiction. Thus ̂̃gφ ∈ FL1 with support disjoint from supp f̂ , which implies〈
f̂ g, φ̂

〉
FL∞,FL1 =

〈
f̂ , ̂̃gφ〉

FL∞,FL1 = 0

by theorem 2.30 and the proof is complete.

4. We now show that a pseudo-measure with fintie support is a measure.

Theorem 2.35. A pseudo-measure carried by one point is a Dirac measure.

Proof. Let f ∈ L∞(R) and assume supp f̂ = {0}.

Claim. If ϕ1,ϕ2 ∈ A(R̂) = F(L1(R)) and ϕ1(ξ) = ϕ2(ξ) in a neighborhood of ξ = 0, then we have
supp(ϕ1 −ϕ2) is compact and away from {0} = supp f̂ , thus〈

f̂ ,ϕ1 −ϕ2

〉
FL∞,FL1 = 0 =⇒

〈
f̂ ,ϕ1

〉
FL∞,FL1 =

〈
f̂ ,ϕ2

〉
FL∞,FL1 .
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Thus we can define c = 〈f̂ ,ϕ〉 where ϕ is any function in FL1 which ϕ(ξ) = 1 in a neighborhood of
ξ = 0, and c will be well-defined independently to ϕ ∈ FL1. Let’s recall the Fejer’s kernel

K(x) =
1

2π

(sinx/2
x/2

)2
has K̂(ξ) = max {1− |ξ |,0} .

Since K ∈ L1(R), we have(
f̂ ∗ K̂

)
(ξ) = f̂K(ξ) =

〈
f̂ , τξ

̂̃K〉
FL∞,FL1

=
〈
f̂ ,K̂(ξ − ·)

〉
FL∞,FL1 .

And
supp f̂K ⊆ supp K̂+ supp f̂ = [−1,1] + {0} = [−1,1] .

Thus if |ξ | ≥ 1 we have f̂K(ξ) = 0.

• If −1 < ξ1 < ξ2 < 0, there exists ε > 0 such that ξi − η ∈ (−1,0) for all η ∈ (−ε,ε), then

K̂(ξ2 − η)− K̂(ξ1 − η) = ξ2 − ξ1 for all η ∈ (−ε,ε).

Let’s define J(η) = (ξ2 − ξ1)χ(η) where χ ∈ C∞c with χ ≡ 1 in (−1,1). It is clear that since
χ ∈ C∞c (R) ⊂ S(R), we have J ∈ FL1. It follows that K̂(ξ2−·)− K̂(ξ2−·) ≡ J(η) where η ∈ (−ε,ε),
the claim implies that 〈

f̂ ,K̂(ξ2 − ·)− K̂(ξ2 − ·)
〉
FL∞,FL1 =

〈
f̂ ,J

〉
FL∞,FL1

and hence
f̂K(ξ2)− f̂K(ξ1) =

〈
f̂ ,J

〉
FL∞,FL1 = c(ξ2 − ξ1).

Since ξ −→ f̂K(ξ) is continuous, upon letting ξ1 −→ −1 we obtain f̂K(ξ) = c(1 + ξ) for −1 <
ξ < 0.

• If 0 < ξ1 < ξ2 < 1, there exists ε > 0 such that ξi − η ∈ (0,1) for all η ∈ (−ε,ε), then

K̂(ξ2 − η)− K̂(ξ1 − η) = ξ1 − ξ2 for all η ∈ (−ε,ε).

Let’s define J(η) = (ξ1 − ξ2)χ(η) where χ ∈ C∞c with χ ≡ 1 in (−1,1). It is clear that since
χ ∈ C∞c (R) ⊂ S(R), we have J ∈ FL1. It follows that K̂(ξ2−·)− K̂(ξ2−·) ≡ J(η) where η ∈ (−ε,ε),
the claim implies that 〈

f̂ ,K̂(ξ2 − ·)− K̂(ξ2 − ·)
〉
FL∞,FL1 =

〈
f̂ ,J

〉
FL∞,FL1

and hence
f̂K(ξ2)− f̂K(ξ1) =

〈
f̂ ,J

〉
FL∞,FL1 = c(ξ1 − ξ2).

Since ξ −→ f̂K(ξ) is continuous, upon letting ξ1 −→ 1 we obtain f̂K(ξ) = c(1−ξ) for 0 < ξ < 1.

From that we have
f̂K(ξ) = cmax {1− |ξ |,0} = cK̂(ξ).

By the uniqueness of Fourier transform on L1(R), note that fK ∈ L1(R, we have

F (fK− cK) (ξ) ≡ 0 =⇒ fK = cK =⇒ f ≡ c a.e

and thus f̂ = cδ0.

5. Theorem 2.35 implies following approximation theorem.

Theorem 2.36. Let ξ ∈ R̂ and denote I(ξ) = {f ∈ FL1 : f (ξ) = 0} and I0(ξ) = {f ∈ S(R̂) : ξ < supp f },
then I0(ξ) is dense in I(ξ) in the topology of (FL1,‖ · ‖FL1 ).

Proof. Note that I0(ξ) and I(ξ) are linear sub-spaces of FL1. If the conclusion of the theorem is not
true, then by Hahn-Banach theorem there exists f̂ ∈ (FL1)∗ = FL∞ such that f̂ doesn’t vanish on
I(ξ) and 〈ϕ̂, f̂ 〉 = 0 for all ϕ ∈ I0(ξ). It is easy to see that supp f̂ = {0}, and thus by theorem 2.35 we
have f̂ = cδ0 for some c ∈R, then obviously 〈ϕ̂, f̂ 〉 = 0 for all ϕ̂ ∈ I(ξ), which is a contradiction.
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3 Almost periodic functions on the real line

Let f be a complex-value function on R and let ε > 0. We call

• An ε-almost period of f is a number τ such that supx∈R |f (x − τ)− f (x)| < ε.

• A set F ⊂ R is called ”relatively dense” in R if and only if there exists a constant Λ = Λ(F) such
that (x,x+Λ)∩F , ∅ for all x ∈R.

• A continuous function f is (uniformly) almost periodic, denoted by u.a.p if for every ε > 0, the set
Fε of all ε-almost period of f is relatively dense in R.

We denote the space of all uniformly almost-periodic functions on R to be AP(R), and for f ∈ AP(R) we
denote by Λ = Λ (ε,f ) the length of the interval in the above definition. Some examples and properties
of functions in AP(R) are:

• Continuous periodic functions are almost-periodic.

• f (x) = cosx+ cos(
√

2x) is almost-periodic but not periodic.

• If f ∈ AP(R) then so are |f |, f̂ (if f̂ makes sense), af for any a ∈C and f (λx) for any real λ.

3.1 Definition and basic properties

1. We have AP(R) ⊂ BUC(R). Indeed, take Λ = Λ(1, f ) and for any x ∈ R let τ ∈ (x −Λ,x) be an
1-almost period then

|f (x)| ≤ 1 + |f (x − τ)| ≤ 1 + sup
x∈[0,Λ]

|f (x)|.

For ε > 0, let ΛΛ(ε/3, f ) then since f is uniformly continuous on [−2Λ,2Λ] there exists 0 < δ < Λ

such that |f (x)−f (y)| < ε
3 whenever x,y ∈ [−2Λ,2Λ] with |x−y| < δ. Let τ ∈ (x−Λ,x) be an ε

3 -almost
period of f , then for any y ∈R with |x − y| < δ we have

|f (x)− f (y)| ≤ |f (x)− f (x − τ)|+ |f (x − τ)− f (y − τ)|+ |f (y)− f (y − τ)| < ε
3

+
ε
3

+
ε
3

= ε

where in the second term we used the uniform continuity of f on [−2Λ,2Λ].

As a corollary, it is easy to see that if f ∈ AP(R) then f 2 ∈ AP(R).

2. For a function f ∈ L∞(R) we denote we denote by fa(x) = τaf (x) = f (x − a) the translation with
a ∈R, and W0(f ) = {fa(·) : a ∈R} set of all translations.

Theorem 3.1. A function f ∈ L∞(R) is uniformly almost periodic if and only if W0(f ) is precompact in
metric space L∞(R).

3. The translation convex hullW (f ) of a function f ∈ L∞(R) is the closed convex hull of
⋃
|a|≤1W0(af ).

In other words, it the the set of uniform limits (in L∞) of functions of the form

m∑
k=1

akτxk f where xk ∈R,
m∑
k=1

|ak | ≤ 1, m ∈N.

For f ∈ L∞(R), we define

W ′(f ) = closure
{
ϕ ∗ f : ‖ϕ‖L1(R) ≤ 1

}
.

Here by closure we mean the closure in L∞(R).

Lemma 3.2. If f ∈ BUC(R) then W ′(f ) ≡W (f ).

Lemma 3.3.

(a) If f ∈ L∞(R) then for every ξ ∈R we have W (eiξxf ) =
{
eiξxg : g ∈W (f )

}
.

42



(b) If f ∈ C0(R) then W (f ) ⊂ C0(R).

Theorem 3.4. If f ∈ L∞(R), we have W (f ) is convex and closed in L∞(R). Furthermore W (f ) is
compact iffW0(f ) is precompact iff f ∈ AP(R).

This characterization of AP(R) gives us a powerful tool to prove the following theorem.

Theorem 3.5. The space of uniformly almost-periodic functions AP(R) is a closed sub-algebra of L∞(R),
i.e it is closed as a sub-space, also closed under multiplication and addition.

Proof. Let f ,g ∈ AP(R), we first show f + g ∈ AP(R). Observe that W (f + g) ⊂ W (f ) +W (g), and
since f ,g ∈ AP(R) we have W (f ),W (g) are both compact in L∞(R), thus W (f ) +W (g) is compact,
therefore W (f + g) is a closed subset of W (f ) +W (g), thus W (f + g) is compact and hence f + g ∈
AP(R). Since f 2, g2, (f + g)2 ∈ AP(R) we have

f g =
1
2

(
(f + g)2 − f 2 − g2

)
∈ AP(R).

We have proved that AP(R) is a sub-algebra of L∞(R). Now let’s consider f in the closure of AP(R)
in L∞(R), it is clear that f is bounded uniformly continuous. Given ε > 0, we can find g ∈ AP(R)
such that ‖f − g‖L∞ ≤ ε

3 . Now let τ is an ε
3 -almost period of g, we then have

sup
x∈R
|f (x − τ)− f (x)| ≤ sup

x∈R
|f (x − τ)− g(x − τ)|+ sup

x∈R
|g(x − τ)− g(x)|+ sup

x∈R
|g(x)− f (x)| < ε.

Thus τ is an ε-almost period of f , and every interval of length Λ
(
ε
3 , g

)
contains an ε-almost period

of f , so f ∈ AP(R).

As a consequence, sum of any finite almost-periodic functions is again almost-periodic.

4. A trigonometric polynomial on R is a function of the form f (x) =
∑n
k=1 ake

iξkx where ak ∈ C and
ξk ∈R are called the frequencies of f . Theorem 3.4 says that all trigonometric polynomials and its
uniform limits are almost-periodic.

3.2 Mean value of almost periodic functions

1. The norm spectrum of a function f ∈ L∞(R) is the set

σ (f ) =
{
ξ ∈R : aeiξx ∈W (f ) for a complex number a , 0

}
.

Note that σ (f ) maybe empty, for example if f ∈ C0(R) then W (f ) ⊂ C0(R) by lemma 3.3, but there
is no a , 0 such that aeiξx ∈ C0(R) for some ξ.

Lemma 3.6. For f ∈ L∞(R) and ξ ∈R then σ
(
eiξ(·)f

)
= ξ + σ (f ) = {ξ + η : η ∈ σ (f )}.

2. If f ∈ L∞(R), f̂ can be seen as a tempered distribution on S(R), which can be extended to a linear
functional on FL1 by〈

φ̂, f̂
〉
FL1,FL∞

=
〈
φ,f

〉
L1,L∞ =

∫
R

φ(x)f (x) dx for all φ ∈ L1(R).

The multiplication of a distribution with a function g ∈ L∞ function is defined by the action〈
ϕ̂,gf̂

〉
FL1,FL∞

=
〈
ϕ̂g, f̂

〉
FL1,FL∞

.

The notion of support of f̂ extends naturally and consistently onto the new test space FL1.

Proposition 3.7. If f ∈ L∞(R) then σ (f ) ⊂ supp f̂ .
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Proof. As a distribution, for any a ∈R we have

τ̂af (ξ) = e−iξaf̂ (ξ) =⇒ supp �τa(f ) = supp f̂ .

Consequently, any ϕ ∈W (f ) satisfies supp ϕ̂ ⊂ supp f̂ . Indeed:

• Any finite convex combination of translations is clearly has support contained in supp f̂ .

• When ϕ ∈W (f ) is the uniform limit of a sequence ϕn where ϕn are convex finite combination
of translations, i.e. ‖ϕn −ϕ‖L∞ −→ 0, then since supp ϕ̂n ⊂ supp f̂ , for any φ ∈ L1(R) with
supp φ̂∩ supp f̂ = ∅, we have supp φ̂∩ supp ϕ̂n = ∅, thus〈

φ̂, ϕ̂
〉
FL1,FL∞

= lim
n−→∞

〈
φ̂, ϕ̂n

〉
FL1,FL∞

= 0

since ϕ̂n −→ ϕ̂ in FL∞. Hence as a distribution, ϕ̂ vanish on R
n\supp f̂ , i.e., supp ϕ̂ ⊂ supp f̂ .

If ϕ(·) = aeiξ(·) ∈W (f ) then ϕ̂(·) = 2πaδ0(· − ξ) must satisfy supp ϕ̂ = {ξ} ⊂ supp f̂ . Thus we have
proved that ξ ∈ σ (f ) implies ξ ∈ supp f̂ .

3. The Fejér kernel Kλ is a approximation of identity as λ −→ ∞. However as λ −→ 0 we have the
following result.

Proposition 3.8. Let f ∈ BUC(R), assume that Kλ ∗ f converges uniformly in L∞ norm as λ −→ 0 to a
limit which is not identically zero, then 0 ∈ σ (f ).

Proof. Assume Kλ ∗ f −→ u in L∞(R) as λ −→ 0, let’s define gλ = Kλ ∗ f ∈ L∞(R) for λ > 0 then as
distributions we have

ĝλ = K̂

( ·
λ

)
f̂ =∈ FL∞ =⇒ supp ĝλ ⊂ supp K̂

( ·
λ

)
∩ supp f̂ ⊂ [λ,λ] .

Since ĝλ −→ û in FL∞ as λ −→ 0, we have supp û = {0}. Indeed, if ϕ ∈ L1(R) with supp ϕ̂ is
compactly supported away from {0}, there exists λ0 > 0 so that supp ϕ̂ ∩ [λ,λ] = ∅ for all λ < λ0,
thus 〈ϕ̂, ĝλ〉FL1,FL∞ = 0 for all λ < λ0 which implies that 〈ϕ̂, û〉FL1,FL∞ = 0, and since u . 0, we have
supp û = {0}. Since supp û = {0} we have û ≡ cδ0 for some c , 0, which implies u ≡ c. By lemma
3.2, we have

gλ = Kλ ∗ f ∈W (f ) for all λ =⇒ u = lim
λ−→0

gλ ∈W (f )

as the limit is taken in L∞ norm. Thus we have shown that 0 , c ∈W (f ), which mean 0 ∈ σ (f ).

Note that within our notation:

• As a distribution u we have

δ̂0 =
1

2π
, 1̂ = δ0, ̂̂u =

1
2π
ũ

and if ϕ ∈ S(R) is a test function then

(ϕ∨)∨ =
1

2π
ϕ̃.

• As a measure we have

δ̂0(ξ) =
∫
R

e−iξx dδ0(x) = 1 =⇒ δ̂0 = 1.
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4. If µ ∈ M(R̂), it can be identified with FL∞ by setting f (x) = µ̂(−x) ∈ L∞(R) then by Parseval’s

formula and ̂̂
f (x) = 2πf (−x) we have〈

ϕ̂,µ
〉
C0(R̂),M(R̂) =

∫
R̂

ϕ̂(ξ)dµ(ξ) =
∫
R

ϕ(−x)µ̂(x) dx =
∫
R

ϕ(x)f (x) dx =
〈
ϕ̂, f̂

〉
FL1,FL∞

for any ϕ ∈ L1(R), note that ϕ̂ ∈ C0(R̂) by Riemann-Lebesgue lemma. Thus µ = f̂ ∈ FL∞, note that
there is no factor 2π in this case, based on our notations.

Corollary 3.9. Let µ ∈M(R̂) and assume µ({0}) , 0. Let f (x) = µ̂(−x) then 0 ∈ σ (f ). In fact we have

lim
λ−→0

∥∥∥Kλ ∗ f −µ({0})
∥∥∥
L∞

= 0.

Proof. Let gλ = Kλ ∗ f then ĝλ = K̂λ µ ∈M(R̂). For any test function ϕ ∈ L∞(R̂) we have∫
R̂

ϕ(ξ) d (ĝλ(ξ)) =
∫
R̂

(
1− |ξ |

λ

)
ϕ(ξ)χ(−λ,λ)(ξ) dµ(ξ)

= ϕ(0)µ({0}) +
∫
R̂

(
1− |ξ |

λ

)
ϕ(ξ)χ(−λ,λ)\{0}(ξ) dµ(ξ) −→ ϕ(0)µ({0})

as λ −→ 0 by the dominated convergence theorem, since χ(−λ,λ)\{0} −→ 0 point-wise everywhere
and (1− |ξ |/λ)ϕ(ξ) is bounded by ‖ϕ‖L∞ . If we restrict the space of test functions to C0(R̂) then it
gives ĝλ

∗
⇀ µ({0})δ0 in the weak∗ topology of M(R̂), or in the distribution sense. In deed from the

above estimate we get∣∣∣∣∣∫
R̂

ϕ d
(
ĝλ −µ({0})δ0

)∣∣∣∣∣ ≤ ‖ϕ‖L∞ ∫
(−λ,λ)\{0}

(
1− |ξ |

λ

)
d|µ|(ξ) ≤ ‖ϕ‖L∞ |µ|

(
(λ,λ)\{0}

)
which gives us, by Rieze representation theorem∥∥∥ĝλ −µ({0})δ0

∥∥∥
M(R̂)

= sup
‖ϕ‖L∞≤1

∣∣∣∣∣∫
R̂

ϕ d
(
ĝλ −µ({0})δ0

)∣∣∣∣∣ ≤ |µ|((λ,λ)\{0}
)
−→ 0

thus gλ −→ µ({0}) uniformly in L∞(R) and the result follows from proposition 3.8.

5. In fact proposition 3.8 is true for any general summability kernel.

Proposition 3.10. Let f ∈ BUC(R) and F ∈ L1(R). Define Fλ(x) = λF(λx) for λ > 0. Assume that Fλ ∗f
converges uniformly in L∞ norm as λ −→ 0 to a limit which is not identically zero, then 0 ∈ σ (f ).

Proof. Assume Fλ ∗f −→ u in L∞(R) as λ −→ 0 and u . 0. Let Kn(x) = nK(nx) where K is the Fejer’s
kernel as usual and n ∈N, let Gn = F ∗Kn then Gn −→ F in L1(R) as n −→ ∞, then Hn = F −Gn ∈
L1(R) with ‖Hn‖L1 −→ 0 as n −→∞. We have the decomposition

F = Gn +Hn, lim
n−→∞

‖Hn‖L1 = 0, Ĝn = F̂K̂n is compactly supported in [−n,n].

For each λ > 0, letGn,λ(x) = λGn(λx)
Hn,λ(x) = λHn(λx)

=⇒ Fλ(x) = Gn,λ(x) +Hn,λ(x) for n ∈N,λ > 0. (31)

Since Ĝn,λ(ξ) = Ĝn
(
ξ
λ

)
, for each λ > 0 and n ∈N we have

supp �Gn,λ ∗ f = supp
(
Ĝn,λ · f̂

)
⊆ supp Ĝn,λ ⊂ [−λn,λn]. (32)

Let λ = 1
n2 , from (31) we have

�Fn−2 ∗ f = �Gn,n−2 ∗ f + �Hn,n−2 ∗ f as elements of FL∞. (33)
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Since f ∈ L∞(R), we have

‖Hn,n−2 ∗ f ‖L∞ ≤ ‖f ‖L∞‖Hn,n−2‖L1 = ‖f ‖L∞‖Hn‖L1 −→ 0 as n −→∞.

From that and (31) we obtain Gn,n−2 ∗ f −→ u in L∞(R), which means �Gn,n−2 ∗ f −→ û in FL∞, and
together with (33) we obtain supp û = {0} by an argument similar to the proof of proposition 3.8.
Therefore u ≡ c for some c , 0 and by lemma 3.2, we have

Fλ ∗ f ∈W (f ) for all λ =⇒ u = lim
λ−→0

Fλ ∗ f ∈W (f )

in L∞ norm. Thus we have shown that 0 , c ∈W (f ), which mean 0 ∈ σ (f ).

6. The condition of existence of a uniform limit of Fλ ∗ f as λ −→ 0 can clearly be replaced by the less
stringent condition of the existence of a nonvanishing limit point.

Proposition 3.11. Let f ∈ AP(R) and assume 0 < σ (f ), then for any F ∈ L1(R) we have

lim
λ−→0

‖Fλ ∗ f ‖L∞(R) = 0

where Fλ(x) = λF(λx).

Proof. Since f ∈ AP(R), W (f ) is compact in L∞(R) and {Fλ ∗ f }λ>0 is a sequence in L∞(R), if the
claim is not true then there exists a sequence λn −→ 0 such that Fλn ∗ f −→ u in L∞(R) as n −→∞
where u ∈ L∞(R) so that u . 0. Proposition 3.10 implies that 0 ∈ σ (f ), which is a contradiction.

Conversely, we have the following:

Proposition 3.12. Let f ∈ AP(R), F ∈ L1(R) and
∫
R
F(x) dx , 0. If for some sequence λn −→ 0 we have

lim
λn−→∞

∥∥∥Fλn ∗ f ∥∥∥L∞(R)
= 0

where Fλ(x) = λF(λx), then 0 < σ (f ).

Proof. It is easy to see that for any translation ϕ = τa(f ) we have ‖Fλn ∗ϕ‖L∞ = ‖Fλn ∗ f ‖L∞ , thus
limλn−→∞

∥∥∥Fλn ∗ϕ∥∥∥
L∞(R)

= 0. Consequently this limit holds true for all ϕ whose are finite convex

combinations of translations, which in turn implies limλn−→∞
∥∥∥Fλn ∗ϕ∥∥∥

L∞(R)
= 0 for all ϕ ∈W (f ).

To be precise, let {ϕk} be a sequence in L∞(R) where each ϕk is a finite convex combination of
translation of f , and ‖ϕk −ϕ‖L∞ −→ 0, we then have limn−→∞ ‖Fλn ∗ϕk‖L∞ = 0 for all k ∈N, and∥∥∥Fλn ∗ϕ∥∥∥

L∞
≤

∥∥∥Fλn ∗ϕk∥∥∥L∞ +
∥∥∥Fλn ∗ (ϕ −ϕk)∥∥∥L∞ ≤ ∥∥∥Fλn ∗ϕk∥∥∥L∞ + ‖Fλn‖L1‖ϕk −ϕ‖L∞ .

Since ‖Fλn‖L1 = ‖F‖L1 for all n ∈N, let n −→∞ we obtain

limsup
n−→∞

∥∥∥Fλn ∗ϕ∥∥∥
L∞
≤ ‖F‖L1‖ϕk −ϕ‖L∞ .

Now let k −→∞ we obtain the limit is zero. Now we observe that:

0 ∈ σ (f ) ⇐⇒ there exists a constant C , 0 such that C ∈W (f ).

Thus if 0 ∈ σ (f ), with the constant C as above we must have

lim
λn−→0

‖Fλn ∗C‖L∞ = C
(∫

R

F(x) dx
)

= 0

which is a contradiction.

7. We are now ready to prove one of the most important property of almost periodic functions.
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Theorem 3.13 (Mean-value theorem). To every f ∈ AP(R) there corresponds a unique number M(f ),
called the mean value of f , having the property that 0 < σ

(
f −M(f )

)
. Furthermore, for any F ∈ L1(R) if

we set Fλ(x) = λF(λx) then
lim
λ−→0

∥∥∥Fλ ∗ f − F̂(0)M(f )
∥∥∥
L∞(R)

= 0.

Proof. Recall that for Kλ(x) = λK(λx) we then have {Kλ ∗ f }λ>0 is a subset of the compact set
W (f ) ⊂ L∞(R), thus to any sequence λn −→ 0 there corresponds a subsequence and a limit point
Kλnk

∗ f −→ u in L∞(R) as λnk −→ 0, and u ≡ C as a constant by proposition 3.8. Let α be such a
limit point of a sequence Kλnk

∗ f as λnk −→ 0 like that, we have

lim
λnk−→0

∥∥∥Kλn ∗ f −α
∥∥∥
L∞(R)

= lim
λnk−→0

∥∥∥∥Kλnk
∗ (f −α)

∥∥∥∥
L∞(R)

= 0.

By proposition 3.12 we obtain 0 < σ (f − α), consequently proposition 3.11 implies that the limit
above holds for the full sequence λ −→ 0. If β is another constant such that 0 < σ (f − β) then by
proposition 3.11 we must have

lim
λ−→0

∥∥∥Kλ ∗ (f − β)
∥∥∥
L∞(R)

= 0

and hence
|α − β| = lim

λ−→0

∥∥∥Kλ ∗ (α − β)
∥∥∥
L∞(R)

= 0 =⇒ α = β.

Thus the property 0 < σ (f −α) determines α uniquely and we set M(f ) = α. Finally by replacing
the Fejer’s kernel K by F ∈ L1(R) and using proposition 3.11 with f being replaced by f −F̂(0)M(f )
we obtain the second limit.

In particular, by taking some specific F ∈ L1(R) we obtain the following:

Corollary 3.14. Let f ∈ AP(R) then

M(f ) = lim
λ−→0

λ
2

∫ 1
λ

− 1
λ

f (x) dx = lim
T−→∞

1
2T

∫ T

−T
f (x) dx = lim

T−→∞

1
T

∫ 0

−T
f (x) dx = lim

T−→∞

1
T

∫ T

0
f (x) dx.

8. Using the mean value we can determine the norm spectrum of f ∈ AP(R) completely. From lemma
3.6 it is clear that

ξ ∈ σ (f ) ⇐⇒ 0 ∈ σ (f e−iξx) ⇐⇒ M(f e−iξx) , 0. (34)

Recall that every measure µ ∈M(R) can be decomposed to a sum µ = µc+µd where µc is continuous
and µd is discrete. If f̂ is a measure then corollary 3.9 implies that f̂ ({0}) = M(f ) and similarly
f̂ ({ξ}) =M(f e−iξx) and thus we can recover the discrete part of f . We shall soon see that f̂ has no
continuous part when f ∈ AP(R).

9. We summarize some basic properties of the mean value of f ∈ AP(R) in the following theorem.

Theorem 3.15 (Basic properties of the mean value). For f ,g ∈ AP(R) and a ∈R we have

(a) M(f + g) =M(f ) +M(g), M(af ) = aM(f ) and M
(
τaf

)
=M(f ).

(b) If f (x) ≥ 0 and f . 0, then M(f ) > 0.

Proof.

(a) Using the mean value theorem, let F ∈ L1(R) with
∫
R
F(x) dx = 1, and Fλ(x) = λF(x), we then

have
Fλ ∗ (af + g) = aFλ ∗ f +Fλ ∗ g =⇒ M(af + g) = aM(f ) +M(g)

by letting λ −→ 0. For translation, we have

(Fλ ∗ (τaf )(x) = (Fλ ∗ f )(x − a) =⇒ M(τaf ) =M(f )

by letting λ −→ 0 since the limit is uniform in L∞(R).
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(b) Since f . 0 and M(τaf ) = M(f ) for all a ∈ R, we can assume f (0) > 0. Since f is continuous,
there exists ε > 0 such that f (x) ≥ ε on [−ε,ε]. Let Λ = Λ

(
ε
2 , f

)
, for any interval of length Λ,

say [a,a+Λ] we can pick τ ∈ [a,a+Λ] as a ε
2 -almost period of f , then

sup
x∈R
|f (x+ τ)− f (x)| <

ε
2

=⇒ f (x) ≥ ε
2

for all x ∈ [τ − ε,τ + ε].

Since τ ∈ [a,a + Λ], we have Ia = [a,a + Λ] ∩ [τ − ε,τ + ε] is non-empty and is an interval of
length ε, consequently

1
Λ

∫ a+Λ

a
f (x) dx ≥ 1

Λ

∫
Ia

f (x) dx ≥ ε
2

Λ
.

It holds true for all a ∈R, let a = nΛ where n = 1,2, . . . and by corollary 3.14 we obtain

M(f ) = lim
n−→∞

1
nΛ

∫ nΛ

0
f (x) dx = lim

n−→∞
1
n

n−1∑
j=0

1
Λ

∫ (j+1)Λ

jΛ
f (x) dx

 ≥ ε2

Λ
> 0.

3.3 Pre-Hilbert space structure on AP(R)

Let H be a complex vector space, an inner product (or scalar product) on H is a map (x,y) 7−→ 〈x,y〉 from
H×H 7−→ C such that:

1. 〈ax+ by,z〉 = a〈x,z〉+ b〈y,z〉 for all x,y,z ∈H and a,b ∈C.

2. 〈y,x〉 = 〈x,y〉 for all x,y ∈H.

3. 〈x,x〉 ∈ (0,∞) for all nonzero x ∈H.

A complex vector space equipped with an inner product is called a pre-Hilbert space. If H is a pre-
Hilbert space, for x ∈H we define ‖x‖ =

√
〈x,x〉. By Schwartz inequality

∣∣∣〈x,y〉∣∣∣ ≤ ‖x‖‖y‖ we deduce that
x 7−→ ‖x‖ is a norm on H. If x,y ∈H and 〈x,y〉 = 0, we say x is orthogonal to y and write x⊥y. If E ⊂H

then E⊥ = {x ∈H : 〈x,y〉 = 0 for all y ∈ E} is a closed subspace of H.

Proposition 3.16. If xn −→ x and yn −→ y then 〈xn, yn〉 −→ 〈x,y〉.

Proposition 3.17 (The Parallelogram Law). For x,y ∈H then ‖x+ y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).

Proposition 3.18 (The Pythagorean theorem). If x1, . . . ,xn ∈H and xj⊥xk for j , k then∥∥∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥∥∥
2

=
n∑
j=1

‖xj‖2.

A subset {uα}α∈A of H is called othonormal if ‖uα‖ = 1 for all α ∈ A and uα⊥uβ whenever α⊥β.

Proposition 3.19 (Bessel’s inequality). If {uα}α∈A is an orthonomal set in H, then for any x ∈H 1∑
α∈A
|〈x,uα〉|2 ≤ ‖x‖2.

In particular, {α ∈ A : 〈ux,α〉 , 0} is countable.

Theorem 3.20. If {uα}α∈A is an orthonormal set in H then the following are equivalent:

(a) (Completeness) If 〈x,uα〉 = 0 for all α ∈ A then x ≡ 0.

1Where
∑
x∈S f (x) is the supremum of

∑
x∈E f (x) over all finite subset E ⊂ S.
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(b) (Parseval’s Identity) ‖x‖2 =
∑
α∈A |〈x,uα〉|2 for all x ∈H.

(c) For each x ∈H, x =
∑
α∈A

∑
x∈H〈x,uα〉uα where the sum on the right has only countably many nonzero

terms and converges in the norm topology no matter how these terms are ordered.

1. (AP(R) as a Pre-Hilbert space.) Recall that AP(R) is a sub-algebra of L∞(R), we now define the
inner product on AP(R) by

〈f ,g〉M :=M(f g) = lim
T−→+∞

1
2T

∫ T

−T
f (x)g(x) dx for all f ,g ∈ AP(R).

It is clear that this inner product is well-defined and hence (AP(R),〈·, ·〉M ) is a pre-Hilbert space.

Proposition 3.21. In the pre-Hilbert space AP(R) defined above, the exponentials {eiξx}ξ∈R form an
orthonomal family.

Proof. We have 〈
eiξx, eiηx

〉
M

= lim
T−→∞

1
2T

∫ T

−T
ei(ξ−η)x dx =

1 if ξ = η
0 if ξ , η.

Let’s introduce the notation2

f̂ ({ξ}) :=
〈
f , eiξx

〉
M

=M
(
f e−iξ(·)

)
.

Recall (34) we have
ξ ∈ σ (f ) ⇐⇒ f̂ ({ξ}) , 0. (35)

In other words, f̂ ({ξ}) are the Fourier coefficients of f relative to the orthonormal family {eiξx}ξ∈R̂.
The Bessel’s inequality reads ∑

ξ∈R̂

∣∣∣f̂ ({ξ})
∣∣∣2 ≤ 〈f , f 〉M =M

(
|f |2

)
.

It follows that
{
ξ ∈ R̂ : f̂ ({ξ}) , 0

}
is a countable set, thus together with 35 we have σ (f ) is countable

for all f ∈ AP(R).

2. (Convolution in AP(R)) We now introduce the mean convolution f ∗M g of two functions f ,g ∈
AP(R) as following:

(f ∗M g)(x) =M
((
τx f̃

)
g
)

= lim
T−→∞

1
2T

∫ T

−T
f (x − y)g(y) dy.

Since AP(R) is a sub-algebra of L∞(R),
(
τx f̃

)
g ∈ AP(R) provided f ,g ∈ AP(R), thus the above

definition is well-defined.

Proposition 3.22. If f ,g ∈ AP(R) then f ∗M g ∈ AP(R). If M(|g |) ≤ 1 then f ∗M g ∈W (f ).

Proof. Let’s consider g ∈ AP(R) with M(|g |) < 1. For each n ∈N large, we define

gn =
1

2n
χ[−n,n]g ∈ L1(R) has ‖gn‖L1(R) =

1
2n

∫ n

−n
|g(x)| dx. (36)

By the mean-value theorem, we have ‖gn‖L1 −→M(|g |) < 1 as n −→∞, thus for n large enough we
have ‖gn‖L1 < 1. Theorem 3.2 implies that

x 7−→ 1
2n

∫ n

−n
f (x − y)g(y) dy = f ∗ gn(x) ∈W (f ) for all n large.

2By abuse of language we refer to f̂ ({ξ}) for f ∈ AP(R) as the mass of the pseudo-measure f̂ at ξ.
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The compactness of W (f ) implies that there exists a sub-sequence {nk} ⊂N such that f ∗ gnk −→ h
uniformly in L∞(R). On the other hand, for each x ∈R we have(

f ∗ gnk
)
(x) =

1
2nk

∫ nk

−nk
f (x − y)g(y) dy −→ (f ∗M g) (x)

as nk −→∞. Thus f ∗M g ≡ h point-wise, hence

lim
n−→∞

‖f ∗ gn − f ∗M g‖L∞ = 0.

Thus f ∗M g ∈W (f ), hence it is uniformly almost periodic. The caseM(|g |) = 1 and the general case
follow from scaling and linearity of the mean value.

Proposition 3.23. For f ,g ∈ AP(R) and ξ ∈ R̂ then

(a) �(f ∗M g) ({ξ}) = f̂ ({ξ}) ĝ ({ξ}) .

(b) (
f ∗M eiξ(·)

)
(x) = f̂ ({ξ})eiξx.

As a consequence, if g(x) =
∑m
j=1αje

iξx then

(
f ∗M eiξ(·)

)
(x) =

n∑
j=1

αj f̂ ({ξ})eiξx.

Proof. By definition we have

�(f ∗M g) ({ξ}) =M
(
(f ∗M g)e−iξx

)
=Mx

My

(
f (x − y)g(y)

)
e−iξx

.
Given ε > 0, by the property of mean value, there exists n1 ∈N such that∣∣∣∣∣ 1

2n

∫ n

−n
My

(
f (x − y)g(y)

)
eiξx dx −Mx

[
My

(
f (x − y)g(y)

)
e−iξx

]∣∣∣∣∣ < ε2 for n ≥ n1.

Similarly, there exists n2 ∈N such that∣∣∣∣∣∣ 1
2k

∫ k

−k
f (x − y)g(y) dy −My

(
f (x − y)g(y)

)∣∣∣∣∣∣ < ε2 for k ≥ n2

which implies that∣∣∣∣∣∣ 1
2n

∫ n

−n
My

(
f (x − y)g(y)

)
e−iξx dx − 1

2n

∫ n

−n

(
1

2k

∫ k

−k
f (x − y)g(y) dy

)
e−iξx dx

∣∣∣∣∣∣ < ε2 for k ≥ k2.

From these facts we obtain∣∣∣∣∣∣(�f ∗M g) ({ξ})− 1
2n

∫ n

−n

(
1

2k

∫ k

−k
f (x − y)g(y) dy

)
e−iξx dx

∣∣∣∣∣∣ < ε (37)

for n ≥ n1, k ≥ n2. On the other hand by the mean value theorem there exist n3,n4 such that∣∣∣∣∣f̂ ({ξ})− 1
2n

∫ n

−n
f (z)e−iξz dz

∣∣∣∣∣ < ε
‖g‖L∞

for n ≥ n3

and ∣∣∣∣∣∣ĝ({ξ})− 1
2k

∫ k

−k
g(z)e−iξz dz

∣∣∣∣∣∣ < ε

|f̂ ({ξ})|+ 1
for k ≥ n4.
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By Fubini’s theorem, the latter term in (37) can be written as

1
2n

∫ n

−n

(
1

2k

∫ k

−k
f (x − y)g(y) dy

)
e−iξx dx =

1
2k

∫ k

−k
g(y)e−iξy

(
1

2n

∫ n

−n
f (x − y)e−iξ(x−y)

)
dy

and thus ∣∣∣∣∣∣ 1
2n

∫ n

−n

(
1

2k

∫ k

−k
f (x − y)g(y) dy

)
e−iξx dx −

(
1

2k

∫ k

−k
g(y)e−iξy dy

)
f̂ ({ξ})

∣∣∣∣∣∣ ≤ ε
for all n ≥ n3, therefore∣∣∣∣∣∣ 1

2n

∫ n

−n

(
1

2k

∫ k

−k
f (x − y)g(y) dy

)
e−iξx dx − ĝ({ξ})f̂ ({ξ})

∣∣∣∣∣∣ ≤ ε (38)

for n ≥ n3, k ≥ n4. From (37) and (38) we deduce that∣∣∣∣(f̂ ∗M g) ({ξ})− f̂ ({ξ})ĝ({ξ})
∣∣∣∣ < 2ε

for all ε > 0 and hence the result follows. For the second part we have(
f ∗M eiξ(·)

)
(x) = lim

T−→∞

1
2T

∫ T

−T
f (x − y)eiξy dy

(z = x − y) =
(

lim
T−→∞

1
2T

∫ T

−T
f (z)e−iξz dy

)
eiξx =M

(
f e−iξ(·)

)
eiξx = f̂ ({ξ})eiξx.

The latter result follows from linearity of the mean value of functions in AP(R).

3. Now for f ∈ AP(R), let’s define f ∗ = f̃ , i.e., f ∗(x) = f (−x) and

h = f ∗M f ∗, i.e., h(x) =My

(
f (x+ y)f (y)

)
.

By definition we have

f̂ ∗({ξ}) =M
(
f ∗(x)e−iξx

)
= lim
T−→∞

1
2T

∫ T

−T
f (−x)e−iξx dx = lim

T−→∞

1
2T

∫ T

−T
f (−x)eiξx dx = f̂ ({ξ})

and thus by proposition 3.23

ĥ({ξ}) = f̂ ({ξ})f̂ ∗({ξ}) =
∣∣∣f̂ ({ξ})

∣∣∣2.
Also it is easy to see that if ‖f ‖L∞ ≤ 1 then h ∈W (f ) by proposition 3.22.

Lemma 3.24. The function h = f ∗∗Mf is positive definite, in the sense that for every choice of ξ1, . . . ,ξm ∈
R and complex numbers λ1, . . . ,λm we have

m∑
j,k=1

h(ξj − ξk)λjλk ≥ 0.

Proof. We have

m∑
j,k=1

h(ξj − ξk)λjλk = lim
T−→∞

∫ T

−T

 1
2T

m∑
j,k=1

f (ξj + x)f (ξk + x)λjλk

 dx
= lim
T−→∞

∫ T

−T

 1
2T

∣∣∣∣ m∑
j,k=1

f (ξj + x)λj
∣∣∣∣2
 dx ≥ 0.
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For f ∈ AP(R) then h = f ∗M f ∗ ∈ AP(R) is continuous and positive definite. Bochner’s theorem
says that h is the Fourier transform of a positive measure or equivalently, ĥ is a positive measure.

4. (AP(R) is a pre-Hilbert space.)

Theorem 3.25 (Fourier inversion formula). If f ∈ AP(R) and f̂ ∈M(R̂), then

f̂ =
∑
ξ∈R̂

f̂ ({ξ})δξ with ‖f̂ ‖M(R̂) =
∑
ξ∈R̂

|f̂ ({ξ})|

and we have an inversion formula
f (x) =

∑
ξ∈R̂

f̂ ({ξ})eiξx.

Proof. Let’s write f̂ = µ+ ν then the discrete part of f̂ is ν =
∑
ξ∈R̂ f̂ ({ξ})δξ , where the series con-

verges absolutely in the normed space M(R̂). We claim the continuous part µ ≡ 0. We have

µ = f̂ −
∑
ξ∈R̂

f̂ ({ξ})δξ

Here we understand δξ (x) = δ0(x − ξ) as measure in M(R̂). Let g(x) = µ̂(−x) then ĝ ≡ µ as distribu-
tions. As measure, we have δ̂ξ (x) = e−iξx, and thus (as Fourier transform of measure)

g(x) = µ̂(−x) = f (x)−
∑
ξ∈R̂

f̂ ({ξ})eiξx

where the sum converges uniformly in L∞(R), as F : M(R̂) −→ BUC(R) with ‖ν̂‖L∞ ≤ ‖ν‖M(R̂) for

ν ∈M(R̂). Since AP(R) is an algebra and the sum converges uniformly in L∞, we obtain g ∈ AP(R).
Now by Wiener’s theorem for measures in M(R̂) we obtain

0 =
∑
ξ∈R̂

|µ({ξ})|2 = lim
λ−→∞

1
2λ

∫ λ

−λ
|µ̂(x)|2 dx = lim

λ−→∞

∫ λ

−λ
|g(x)|2 dx =M(|g |2).

Since |g |2 ∈ AP(R) and |g |2 ≥ 0, theorem 3.15 concludes that g ≡ 0, thus µ ≡ ĝ ≡ 0 as a distribution,
and thus as a measure. Thus we have proved that f̂ =

∑
ξ∈R̂ f̂ ({ξ})δξ and hence ‖f̂ ‖

R̂
=

∑
ξ∈R̂ |f̂ (ξ)|

follows. The inversion formula follows from the fact that g ≡ 0.

This theorem enables us to show the following version of Parseval’s formula:

Theorem 3.26 (Parseval’s formula). Let f ∈ AP(R) then∑
ξ∈R̂

|f̂ ({ξ})|2 =M(|f |2).

Proof. Let h = f ∗M f ∗ then ĥ ∈M(R̂) and thus theorem 3.25 can be applied to deduce that

h(0) =
∑
ξ∈R̂

ĥ(ξ) =
∑
ξ∈R̂

|f̂ (ξ)|2 =M(|f |2).

From that we can conclude that AP(R) with the pre-Hilbert and {eiξ(·)}ξ∈R̂ is a complete orthonor-
mal basic for AP(R). Note that it is not a Hilbert space with the norm induced by the mean value.
The uniqueness reads

Corollary 3.27 (Uniqueness). If f ∈ AP(R) and f . 0 then σ (f ) , ∅.
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For f ∈ AP(R), the series
∑
ξ∈R̂ f̂ ({ξ})eiξx, to which we refer as the Fourier series of f converges to

f in the norm induced by the (mean valued) inner product 〈·, ·〉M .

5. We will show that the Fourier series of f ∈ AP(R) is indeed summable to f in the uniform norm.

Lemma 3.28. Given a finite number of points ξ1, . . . ,ξm ∈ R̂ and an ε > 0, there exists a trigonometric
polynomial B having the following properties: B(x) ≥ 0, M(B) = 1 and B̂({ξj }) > 1− ε for j = 1,2, . . . ,m.

Proof. Let λ1, . . . ,λq be a basis for ξ1, . . . ,ξm, that is, λ1, . . . ,λq are linearly independent over Q and
every ξj can be written in the form ξj =

∑q
k=1 cj,kλk for j = 1, . . . ,m where cj,k are integers. Let δ > 0

such that (1− δ)q > 1− ε and let
N > δ−1 max

j,k
|cj,k |.

Using the discrete Fejér kernel Km(x) =
∑m
−m

(
1− |j |

m+1

)
eijx, let’s define

B(x) =
q∏
k=1

KN (λkx) =
q∏
k=1

 N∑
lk=−N

(
1− |lk |

N + 1

)
eilk(λkx)


=

∑
|lk |≤N

(
1− |l1|

N + 1

)
. . .

(
1−

|lq |
N + 1

)
ei(l1λ1+...+lqλq)x.

It is clear that B(x) ≥ 0 since it is the product of non-negative functions KN (λkx). Since B(x)
is a polynomial (which is quasi-periodic), a simple argument showing that it mean value is the
constant term in it representation, which is the term corresponding to (l1, . . . , lq) = (0, . . . ,0), thus
M(B) = B̂(0) = 1. Finally for each j = 1, . . . ,m we have

B̂({ξj }) = B̂




q∑
k=1

cj,kλk


 =M

(
Be−i(cj,1λ1+...+cj,kλk )x

)
=

q∏
k=1

(
1−
|cj,k |
N + 1

)
> (1− δ)q > 1− ε

where we have used the fact that B̂({ξj }) is the constant in B(x) which corresponds to the case
(l1, . . . , lq) = (cj,1, . . . , cj,q), thus the proof is complete.

Theorem 3.29. Let f ∈ AP(R), then f can be approximated uniformly by trigonometric polynomials
Pn ∈W (f ).

Proof. Since σ (f ) is countable, we can write it as {ξj }∞j=1. For each n ∈N, let Bn be the polynomial

described in the lemma 3.28 for ξ1, . . . ,ξn and ε = 1
n . For each n ∈N we have Pn = f ∗M Bn ∈W (f )

by proposition 3.22 and for each ξj ∈ σ (f ) then

P̂n({ξj }) = f̂ ({ξj })B̂n({ξj }) −→ f̂ ({ξ}) as n −→∞.

If ξ < σ (f ) then P̂n({ξ}) = f̂ ({ξ}) = 0 for all n ∈N. Now {Pn}n∈N is a sequence in the compact space
W (f ), thus it has limit points. Assume Pnk −→ u uniformly as nk −→∞ where u ∈W (f ), then

∣∣∣P̂nk ({ξ})− û({ξ})
∣∣∣ =

∣∣∣∣M ((
Pnk (x)−u(x)

)
e−iξx

)∣∣∣∣ ≤ lim
T−→∞

1
2T

∫ T

−T

∣∣∣Pnk (x)−u(x)
∣∣∣ dx ≤ ‖Pnk −u‖L∞ −→ 0

as nk −→∞. Thus û({ξ}) = f̂ ({ξ}) for all ξ ∈ R, which implies u ≡ f by the uniqueness. Thus there
only one limit point and the convergence holds in the full sequence Pn −→ f uniformly in L∞(R).
Note that Pn is a trigonometric polynomial by proposition 3.23.

6. We have a simple lemma:

Lemma 3.30. If fn be a sequence in AP(R) and fn −→ f uniformly on R, then M(fn) −→ M(f ) as
n −→∞.
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Proof. For any T > 0 we have∣∣∣∣∣∣ 1
2T

∫ T

−T

(
fn(t)− f (t)

)
dt

∣∣∣∣∣∣ ≤ 1
2T

∫ T

−T
|fn(t)− f (t)| dt ≤ ‖fn − f ‖L∞

for all n ∈N. Given ε > 0, we can choose n large such that ‖fn−f ‖L∞ < ε, then in the limit as T −→∞
we obtain limsup |M(fn)−M(f )| < ε and hence M(fn) −→M(f ) since ε is chosen arbitrary.

The trigonometric polynomial that approximates f ∈ AP(R) in theorem 3.29 has the property

M(Pn) = P̂n({0}) = �f ∗M Bn({0}) = f̂ ({0})B̂n({0}) = f̂ (0) =M(f )

by proposition 3.23.

Theorem 3.31. If f ∈ AP(R) with M(f ) = 0 then its anti-derivative

F(x) =
∫ x

0
f (t) dt

satisfies

lim
|x|−→∞

F(x)
x

= 0.

Proof. We have

lim
|x|−→∞

F(x)
x

= lim
|x|−→∞

1
x

∫ x

0
f (t) dt =M(f ) = 0.

An analog of theorem 1.1 is not true generally for AP(R). Anti-derivative of a almost periodic
function with mean zero is not necessary be bounded. Indeed, since AP(R) is a Banach space
under the uniform norm, if for all f ∈ AP(R) has mean zero then its anti-derivative is bounded,
then the following operator is well-defined:

T : (AP(R),‖ · ‖L∞ ) −→ L∞(R)

f 7−→ T f where T f (x) =
∫ x

0
f (t) dt.

It is clear that T is linear. Let’s AP0(R) be the set of functions in AP(R) with mean value 0, we first
see that AP0(R) is a closed subspace of AP(R) under the uniform norm by lemma 3.30. We will
use the Closed Graph Theorem to show that T is bounded. Indeed, if fn −→ f in AP(R) under the
uniform norm and T fn −→ g in L∞(R), then for each x ∈R we have

|T f (x)− g(x)| ≤ ‖T f − T fn‖L∞ .|x|+ ‖T fn − g‖L∞ −→ 0

as n −→∞. Hence T f = g and by Closed Graph Theorem T is bounded, i.e. there exists a uniform
constant C such that

‖T f ‖L∞ ≤ C‖f ‖L∞
for all f ∈ AP0(R). This is absurd, since for example let us take f (x) = eiλx then T f (x) = 1

iλe
iλx,

hence

‖T f ‖L∞ ≤ C‖f ‖L∞ =⇒
∣∣∣∣∣1
λ

∣∣∣∣∣ ≤ C
for all λ , 0, which is clearly false.

A constructive example is as following:

Theorem 3.32. Let us consider

f (x) =
∞∑
n=1

1
n2 e

in−2x ∈ AP0(R).

It is clear that the series converges absolutely in L∞(R). The anti-derivative of f is well-defined but it is
unbounded.
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Proof. Let

F(x) =
∫ x

0
f (t) dt and Fm(x) =

∫ x

0

m∑
n=1

1
n2 e

in−2t dt = (−i)
m∑
n=1

(
ein
−2x − 1

)
for m ∈N. Observe that by the Euler’s formula we have

ein
2x − 1 = 2i sin

( x

2n2

)[
sin

( x

2n2

)
+ i cos

( x

2n2

)]
= 2i sin

( x

2n2

)
e
−i x

2n2

which implies that ∣∣∣∣ein2x − 1
∣∣∣∣ ≤ 2

∣∣∣∣∣sin
( x

2n2

)∣∣∣∣∣ ≤ |x|n2

when |x|
2n2 ≤ 1. Thus Fm(x) −→ F(x) as m −→ ∞ by the dominated convergence theorem, and the

anti-derivative of f is given by

F(x) =
∫ x

0
f (t) dt = (−i)

∞∑
n=1

(
ein
−2x − 1

)
.

In order to see that F is unbounded, we only need to look at the modulus of the imaginary part of
F(x), i.e.

Im F(x) =
∞∑
n=1

(
cos

( x
n2

)
− 1

)
= −2

∞∑
n=1

sin2
( x

2n2

)
.

Thus it is enough show that that
∑∞
n=1 sin2

(
x

2n2

)
is an unbounded function of x. Utilizing the

inequality

|sinx| ≥ 2|x|
π

for |x| ≤ π
2

we deduce that for each x fixed, then for n large enough such that |x|2n2 ≤ π
2 we have

∞∑
n=1

sin2
( x

2n2

)
=

[
√
|x|/π]∑
n=1

sin2
( x

2n2

)
+

∞∑
n=[
√
|x|/π]

sin2
( x

2n2

)

≥
∞∑

n=[
√
|x|/π]

|x|2

n4π2 =
|x|2

π2


∞∑

n=[
√
|x|/π]

1
n4

 .
Although we know

∑∞
n=1

1
n4 = π4

90 , it is still unclear why the sum above is unbounded in term of x
since when |x| gets larger, the sum gets smaller. Let’s consider x = k2π with k ∈N then

|x|2

π2


∞∑

n=[
√
|x|/π]

1
n4

 = k4
∑
n=k

1
n4 ≥ k

4
∫ ∞
k

dx

x4 =
k4

3k3 =
k
3
−→∞

as k −→∞. Thus F(x) is unbounded.

3.4 Some sufficient conditions for functions to be almost-periodic

1. (Bohr theorem) We have the following criterion for function to be almost-periodic.

Theorem 3.33 (Bohr). Let f ∈ L∞(R) with its classical derivative f ′ ∈ AP(R), then f ∈ AP(R).

Proof. Since AP(R) is a sub-algebra, without loss of generality we can assume f is real-valued.
Note that f is continuous already, thus all we need to do is to show that for given ε > 0, there exists
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Λ = Λ(ε,f ) such that any interval of length Λ contains an ε-almost-period of f . Let α = supx∈R f (x)
and β = infx∈R f (x), let xα ,xβ be real numbers such that

f (xα) > α − ε
8
, f (xβ) < β +

ε
8
, and δ =

ε
4|xα − xβ |

.

We claim that if τ is an δ-almost-period of f ′ then f (xβ − τ) ∈
[
β,β + ε

2

)
. Indeed we have

f (xα − τ)− f (xβ − τ) =
∫ xα

xβ

f ′(x − τ) dx =
∫ xα

xβ

f ′(x) dx+
∫ xα

xβ

(
f ′(x − τ)− f ′(x)

)
dx

= f (xα)− f (xβ) +
∫ xα

xβ

(
f ′(x − τ)− f ′(x)

)
dx.

Since τ is an δ-almost-period of f ′ , the last term is bounded by ε
4 , thus we deduce that

f (xα − τ)− f (xβ − τ) > α − β − ε
2

=⇒ f (xβ − τ) < m+
ε
2
. (39)

Let L = Λ
(
δ
2 , f
′
)
. For x ∈R, let ρ ∈ (x − xβ ,x − xβ +L) be an δ

2 -almost-period of f ′ . We have

f (x − τ)− f (x) =
(
f (x − τ)− f (xβ − τ − ρ)

)
+
(
f (xβ − τ − ρ)− f (xβ − ρ)

)
+
(
f (xβ − ρ)− f (x)

)
= f (xβ − τ − ρ)− f (xβ − ρ) +

∫ xβ−ρ

x

(
f ′(y)− f ′(y − τ)

)
dy

for any τ ∈R. Observe that if we choose η = min
{
ε

2L ,
δ
2

}
and τ to be an η-almost-period of f ′ , which

is independent to x and ρ, then τ + ρ and ρ are δ-almost-periods of f ′ , thus from (39) we have

f (xβ − τ − ρ), f (xβ − ρ) ∈
[
β,β +

ε
2

)
=⇒

∣∣∣f (xβ − τ − ρ)− f (xβ − ρ)
∣∣∣ < ε

2
(40)

and ∣∣∣∣∣∫ xβ−ρ

x

(
f ′(y)− f ′(y − τ)

)
dy

∣∣∣∣∣ < η(xβ − x − ρ) <
ε

2L
×L =

ε
2

(41)

From (40) and (41) we obtain f |(x − τ) − f (x)| < ε and hence every interval of length Λ = Λ(η,f ′)
contains an ε-almost-period of f .

2. For f ∈ AP(R) we say that f̂ is an ”almost-periodic pseudo-measure”. We call a pseudo-measure
ν ∈ FL∞ is ”almost-periodic” at a point ξ0 ∈ R̂ if there exists a function ϕ ∈ FL1 with ϕ ≡ 1 in a
neighborhood of ξ0 such that ϕν is an almost-periodic pseudo-measure. The definition clearly
implies that the set of points where ν is almost-periodic is an open set of R̂.

Lemma 3.34. ν ∈ FL∞ is almost-periodic at ξ0 if and only if ψν is almost-periodic for all ψ ∈ FL1 with
supp ψ is sufficiently close to ξ0.

Proof. If ν is almost-periodic at ξ0, let ϕ ∈ FL1 with ϕ ≡ 1 on (ξ0 − ε,ξ0 + ε) such that ϕν = ĝ for
some g ∈ AP(R). Now for ψ = f̂ with f ∈ L1 and supp ψ ⊂ (ξ0 − ε,ξ0 + ε) we have ϕψ = ψ on
(ξ0 − ε,ξ0 + ε) and thus ψν = ϕ(ψν) = ψ(ϕν) = f̂ ∗ g which is almost-periodic since f ∗ g ∈ AP(R)
due to f ∈ L1(R) and g ∈ AP(R). The inverse is obvious.

Corollary 3.35. If ν ∈ FL∞ then it is is almost-periodic at every ξ < supp ν.

Proof. If ξ < supp ν then there exists ε > 0 such that (ξ − ε,ξ + ε) ∩ supp ν = ∅. Let ϕ ∈ C∞c (R)
be a function such that ϕ = 1 in a neighborhood of ξ and supp ϕ ⊂ (ξ − ε,ξ + ε) then ϕν ≡ 0 as a
distribution, which belongs to F(AP(R)).

Lemma 3.36. Let ν ∈ FL∞ with supp ν is compact and ν is almost-periodic at every point of supp ν,
then ν is almost-periodic.
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Proof. For each ξ ∈ supp ν let ϕξ ∈ FL1 such that ϕξ = 1 on (ξ − εξ ,ξ + εξ ) and ϕξν is almost-
periodic. Since supp ν is compact, there is finite ξ1, . . . ,ξm and ε > 0 such that supp ν is covered
by

⋃m
j=1(ξj − ε,ξj + ε). Let ϕj ∈ C∞c (R) such that supp ϕj ⊂ (ξj − ε,ξj + ε) and

∑m
j=1ϕj = 1. By

lemma 3.34 ϕjν = f̂j for fj ∈ AP(R) and thus ν =
(∑m

j=1ϕj
)
ν =

∑m
j=1ϕjν =

∑m
j=1 f̂j which is almost

periodic.

We now claim that Bohr theorem 3.33 implies the following criterion.

Theorem 3.37. Let f ∈ L∞(R) such that supp f̂ is compact and f̂ is almost-periodic at every ξ ∈ R̂
except, possibly, at ξ = 0 then f ∈ AP(R).

Proof. First we claim that if supp f̂ is compact then f ∈ C1(R) and f̂ ′ = iξf̂ . Let ϕ ∈ S(R) be a test
function such that ϕ̂(ξ) = 1 in a neighborhood of supp f̂ , then f̂ = ϕ̂f̂ and thus f = ϕ ∗ f . Since
f is bounded and ϕ ∈ S(R), we have f = ϕ ∗ f is smooth and in particular f ′ = ϕ′ ∗ f , therefore
f̂ ′(ξ) = ϕ̂′(ξ)f̂ (ξ) = iξϕ̂(ξ)f̂ (ξ) ≡ iξf̂ (ξ) since ϕ̂ = 1 in a neighborhood of supp f̂ .

Since ϕ̂′(0) = 0, and {ψ ∈ S(R̂)) : 0 < supp ψ} is dense in {ψ ∈ FL1(R̂) : ψ(0) = 0}, there exists
{ψn} ⊂ S(R) such that ϕ̂n = 0 in a neighborhood of 0 and ‖ψ̂n − ϕ̂′‖FL1 −→ 0 as n −→∞, therefore

‖ψn ∗ f − f ′‖L∞(R) =
∥∥∥ψ̂n f̂ − ϕ̂′ f̂ ∥∥∥FL∞ ≤ ‖f̂ ‖FL∞‖ψ̂n − ϕ̂′‖FL1 −→ 0

as n −→∞. Now we claim that µn = ψn ∗ f is almost-periodic, or equivalently, µ̂n = ψ̂nf̂ is almost-
periodic as a pseudo-measure. Since supp ψ̂n is compact and is supported away from 0, by lemma
3.36 we only need to show that µ̂n is almost-periodic at every point ξ , 0 in the support of f̂ .
Let ξ ∈ supp f̂ with ξ , 0, since f̂ is almost-periodic at ξ, there exists χ̂ ∈ FL1 with χ̂ = 1 in a
neighborhood of ξ such that χ̂f̂ = ĝ for some g ∈ AP(R). Since

χ̂µ̂n = χ̂ψ̂nf̂ = �ψ ∗ g
therefore by definition we have µ̂n is almost-periodic. Thus the pseudo-measure µn ∈ AP(R) for
all n ∈N, hence f ′ ∈ AP(R) since f ′ = limµn in L∞(R). Finally Bohr theorem 3.33 concludes that
f ∈ AP(R).

The point ξ = 0 in the theorem above plays no specific role. In fact by the same argument we can
show the following.

Lemma 3.38. If ν ∈ FL∞ is almost-periodic for all ξ ∈ (ξ0−ε,ξ0 +ε)\{ξ0} then ν is also almost-periodic
at ξ0. In other word, the set of points where µ is not almost-periodic has no isolated point.

Proof. Let ψ̂ ∈ C∞c (R̂) with supp ψ̂ ⊂ (ξ0−ε,ξ0 +ε) and ψ̂ = 1 in a neighborhood of ξ0, we only need
to show that ψ̂ν is almost-periodic as a pseudo-measure.

• The pseudo-measure ψ̂ν has supp ⊂ supp ψ̂ ⊂ (ξ0 − ε,ξ0 + ε), thus ψ̂ν has compact support
and it is almost-periodic for all ξ < R̂\supp ψ̂.

• For ξ ∈ supp ψ̂ ⊂ (ξ0−ε,ξ0 +ε) and ξ , ξ0, since ν is almost-periodic at ξ, there exists ϕ̂ ∈ FL1

such that ϕ̂ = 1 in a neighborhood of ξ and ϕ̂ν = ĝ for some g ∈ AP(R), then ϕ̂(ψ̂ν) = ψ̂(ϕ̂ν) =�ψ ∗ g is almost-periodic, thus ψ̂ν is almost-periodic at ξ by definition.

Thus ψ̂ν has compact support and is almost-periodic for all ξ ∈ R̂\{ξ0}. By theorem 3.37 we
conclude that ψ̂ν is almost-periodic as a pseudo-measure.

Theorem 3.39. Let f ∈ L∞(R) such that supp f̂ is compact and countable, then f ∈ AP(R).

Proof. From lemma 3.38 we see that A = {ξ ∈ R̂ : f̂ is not almost-periodic at ξ} then clearly A ⊂
supp f̂ has no isolated point and is countable. It is closed since its complement, the set of points
ξ such that ν is almost-periodic at ξ is open. Thus A is a countable perfect set, which has to be
empty. Thus theorem 3.37 concludes that ν is almost-periodic as a pseudo-measure.
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3. Theorem 3.39 can be improved by replacing the condition supp f̂ is compact by a weaker condi-
tion f ∈ BUC(R).

Theorem 3.40. If f ∈ BUC(R) such that supp f̂ is countable then f ∈ AP(R).

Proof. Let Kλ be the Fejér kernel as usual, then for each λ > 0 the L∞(R) function gλ = Kλ ∗ f
satisfies ĝλ = K̂λf̂ and thus supp ĝλ ⊂ supp K̂λ ∩ supp f̂ which is compact and countable. By
theorem 3.39 we have Kλ ∗ f ∈ AP(R) for all λ > 0. Since AP(R) is closed in L∞(R), there exists
a sub-sequence λn −→ ∞ such that Kλn ∗ f −→ g as λn −→ ∞ for some g ∈ AP(R). It is clear that
Kλ ∗f −→ f point-wise in R as λ −→∞, which implies g = f and hence f ∈ AP(R). Indeed it is easy
to see that ‖Kλ ∗ f − f ‖L∞(R) −→ 0 as λ −→∞ for the full sequence.

4. In fact theorem 3.37 and Bohr theorem 3.33 are equivalent. Indeed, let f ∈ L∞(R) with its classical
derivative f ′ ∈ AP(R) we will show that f ∈ AP(R).

• Assume that f̂ has compact support first.

– It is clear that f̂ ′ = iξf̂ as pseudo-measures. In fact if ϕ ∈ S(R) is a function such that
ϕ̂ = 1 in a neighborhood of supp f̂ , then f̂ = ϕ̂f̂ and hence f = ϕ ∗ f is smooth and
f ′ = ϕ′ ∗ f , therefore f̂ ′ = ϕ̂′ f̂ = iξf̂ .

– Now we will show that f̂ is almost-periodic for all ξ , 0 in the support of f̂ .

– Let ξ0 be such a point and 0 < (ξ0 − ε,ξ0 + ε) for some ε > 0, we can choose η ∈ S(R) such
that supp η̂ ⊂ (ξ0 − ε,ξ0 + ε) and η̂ = 1 on

(
ξ0 − ε

2 ,ξ0 + ε
2

)
.

– Clearly we have ξ 7−→ 1
iξ η̂(ξ) belongs to C∞c (R̂), thus in turns we can find χ ∈ S(R) such

that χ̂(ξ) = 1
iξ η̂(ξ).

– We have
χ̂f̂ ′ =

1
iξ
η̂
(
iξf̂

)
= η̂f̂ =⇒ η̂f̂ = �χ ∗ f ′

is almost-periodic as a pseudo-measure.

Thus we have proved that f̂ is almost periodic at every ξ in the compact of f̂ except 0. By
theorem 3.37 we obtain f ∈ AP(R).

• Now in the general case, for each λ > 0 the L∞(R) function gλ = Kλ ∗ f is smooth, bounded
with g ′λ = Kλ ∗f ′ ∈ AP(R). Also ĝλ has compact support. Thus by the result above gλ ∈ AP(R),
and thus since gλ −→ f everywhere as λ −→ 0 and AP(R) is closed in L∞(R) we deduce that
the uniform limit f = limλ−→∞ gλ also belongs to AP(R).

4 Kronecker’s theorem

We first establish the equivalence between the following two theorems:

Theorem 4.1 (Kronecker’s theorem). Let λ1, . . . ,λn be real numbers, independent over the rationals. Let
α1, . . . ,αn be real numbers and ε > 0. Then there exists a real number x such that∣∣∣eiλjx − eiαj ∣∣∣ < ε for all j = 1,2, . . . ,n.

Theorem 4.2. Let λ1, . . . ,λn be real numbers, independent over rationals, λ0 = 0, and let a0, a1, . . . , an be any
complex numbers. Then

sup
x∈R

∣∣∣∣∣∣∣∣
n∑
j=0

aje
iλjx

∣∣∣∣∣∣∣∣ =
n∑
j=0

|aj |.
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Proof of (4.1) implies (4.2). It is obvious that supx∈R
∣∣∣∣∑n

j=0 aje
iλjx

∣∣∣∣ ≤ ∑n
j=0 |aj |. For the converse, given

ε > 0, if we write aj = |aj |eiξj for j = 0, . . . ,n then by theorem (4.1) there exists x ∈R such that∣∣∣eiλjx − ei(ξ0−ξj )
∣∣∣ < ε for j = 1, . . . ,n

which implies that∣∣∣∣∣∣∣∣
∣∣∣∣∣ n∑
j=0

aje
iλjx

∣∣∣∣∣− n∑
j=0

|aj |

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
n∑
j=0

aje
iλjx − eiξ0

n∑
j=0

|aj |

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
n∑
j=0

|aj |ei(λjx+ξj) − eiξ0

n∑
j=0

|aj |

∣∣∣∣∣∣∣∣
≤

n∑
j=0

|aj |.
∣∣∣ei(λjx+ξj ) − eiξ0

∣∣∣ =
n∑
j=0

|aj |.
∣∣∣eiλjx − ei(ξ0−ξj )

∣∣∣ < ε n∑
j=0

|aj |


and thus the proof is complete since ε is arbitrary.

Proof of (4.2) implies (4.1). Consider the polynomial 1 +
∑n

1 e
−iξj eiλjx, by theorem 4.2 for any ε > 0 we

can choose x ∈R such that

n+ 1 ≥

∣∣∣∣∣∣∣∣1 +
n∑
j=1

ei(ξj+λjx)

∣∣∣∣∣∣∣∣ > n+ 1− ε
2
.

By a simple argument, each component must be closed to 1, therefore theorem 4.1 follows.

Now we prove theorem 4.2, first for a simple case.

Theorem 4.3. Let λ1, . . . ,λn be real numbers having the following properties:

(a)
∑n
j=1 cjλj = 0, cj ∈ {−1,0,1} implies cj = 0 for all j = 1,2, . . . ,n.

(b)
∑n
j=1 cjλj = λk , cj ∈ {−1,0,1} implies cj = 0 for all j , k.

Then for any complex numbers a1, . . . , an we have

sup
x∈R

∣∣∣∣∣∣∣∣
n∑
j=1

aje
iλjx

∣∣∣∣∣∣∣∣ ≥ 1
2

n∑
j=1

|aj |.

Proof. Let aj = rje
iξj where rj = |aj | and

g(x) =
n∏
j=1

(
1 + cos

(
λjx+ ξj

))
, and f (x) =

n∑
j=1

aje
iλjx =

n∑
j=1

rje
i(λjx+ξj).

We have g is a non-negative trigonometric polynomial whose frequencies all have the form
∑
j∈S

(
cjλjx

)
,

i.e.,

g(x) = 1 +
∑
Sk

Akei(∑j∈Sk cjλj
)
x

 where Sk is some subset of {1,2, . . . ,n}, Ak =
1

2|Sk |
ei

(∑
j∈Sk cjξj

)
.

It is easy to see that if ξ , 0, then the mean value of eiξx is

M
(
eiξx

)
= lim
T−→∞

1
T

∫ T

0
eiξx dx = 0.
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Therefore, all the terms which contribute to the mean value of g(x) is the one whose frequency is zero,
that is

n∑
j=1

cjλj = 0, cj ∈ {−1,0,1} =⇒ cj = 0 for all j = 1,2, . . . ,n.

by (a), which is cannot the case. Thus M(g) =M(|g |) = 1. By the same argument, we have

f g(x) =

 n∑
j=1

aje
iλjx


1 +

n∑
k=1

Akei(∑j∈Sk cjλj
)
x


 .

This is a trigonometric, and its frequency is zero if and only if

n∑
j=1

cjλj = λk , cj ∈ {−1,0,1} =⇒ cj = 0 for all j , k.

Therefore the mean value, which is the constant term in f g is 1
2
∑n
j=1 rj = 1

2
∑n
j=1 |aj |. Finally, we have

M(f g) ≤ ‖f ‖L∞M(|g |) = ‖f ‖L∞M(g) =⇒ 1
2

n∑
j=1

|aj | ≤ sup
x∈R

∣∣∣∣∣∣∣∣
n∑
j=1

aje
iλjx

∣∣∣∣∣∣∣∣
and the proof is complete. The inequality we used above is obvious since

M(f g) = lim
T−→∞

1
T

∫ T

0
f (x)g(x) dx ≤ ‖f ‖L∞

(
lim
T−→∞

1
T

∫ T

0
|g(x)| dx

)
= ‖f ‖L∞M(|g |).

This theorem is a special case of the following theorem.

Theorem 4.4. Let λ1, . . . ,λn be real numbers having the following properties:

(a)
∑n
j=1 cjλj = 0, cj ∈Z, |cj | ≤N implies cj = 0 for all j = 1,2, . . . ,n.

(b)
∑n
j=1 cjλj = λk , cj ∈Z, |cj | ≤N implies cj = 0 for all j , k.

Then for any complex numbers a1, . . . , an we have

sup
x∈R

∣∣∣∣∣∣∣∣
n∑
j=1

aje
iλjx

∣∣∣∣∣∣∣∣ ≥
(
1− 1

N + 1

) n∑
j=1

|aj |.

Proof. It is similar to the proof of the last one, let aj = rje
iξj , we define

g(x) =
n∑
j=1

KN

(
λjx+ ξj

)
where KN (x) =

N∑
k=−N

(
1− |k|

N + 1
eikx

)
is the discrete Fejer’s kernel and the proof follows in the same manner.

Finally, in theorem 4.2, since λ1, . . . ,λn are linearly independent over rationals, the conditions in our last
theorem are satisfied for all N ∈N, thus

sup
x∈R

∣∣∣∣∣∣∣∣
n∑
j=1

aje
iλjx

∣∣∣∣∣∣∣∣ ≥
(
1− 1

N + 1

) n∑
j=1

|aj |

for all N ∈N. Letting N −→∞ we obtain theorem 4.2 and hence 4.1.
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Some problems

1.5. Let f ∈ L1(T ) and m be a positive integer and write f(m)(t) = f (mt), we have

f̂(m)(n) =

f̂
(
n
m

)
if m |n,

0 if m 6 |n.

Proof. We have

f̂(m)(n) =
1

2π

∫ 2π

0
f (mt)e−int dt

=
1

2mπ

∫ 2mπ

0
f (s)e−i

n
m s ds

=
1

2mπ

m−1∑
k=0

∫ (k+1)2π

k2π
f (s)e−i

n
m s ds

=
1

2mπ

m−1∑
k=0

∫ 2π

0
f (u)e−i

n
m (u+k2π) du =

1
m

m−1∑
k=0

e−i
n
m2kπ

( 1
2π

∫ 2π

0
f (u)e−i

n
mu du

)
.

Note that

1
m

m−1∑
k=0

e−i
n
m2kπ =

1− e−in2π

1− e−i2π
n
m

= 0 if m 6 |n, and
1
m

m−1∑
k=0

e−i
n
m2kπ = 1 if m |n.

The proof is complete from this formula.

2.8. (Fejer’s lemma) If f ∈ L1(T ) and g ∈ L∞(T ) then

lim
n−→∞

1
2π

∫ 2π

0
f (t)g(nt) dt = f̂ (0)ĝ(0).

Proof. Let P =
∑m
k=−m ake

−ikt be a trigonometric polynomial with ‖f − P ‖L1(T ) < ε, we have

1
2π

∫ 2π

0
P (t)g(n)(t) dt =

m∑
k=−m

ak

(
1

2π

∫ 2π

0
g(n)e

−int dt

)
=

m∑
k=−m

ak ĝ(n)(k)

where g(n)(t) = g(nt). Recall that for n , 0 then ĝ(n)(k) = ĝ
(
k
n

)
if n |k and ĝ(n)(k) = 0 otherwise, if we choose

|n| > m then ĝ(n)(k) = 0 for all |k| ≤m, hence

1
2π

∫ 2π

0
P (t)g(n)(t) dt = a0ĝ(0).

Now since |f̂ (0)− P̂ (0)| = |f̂ (0)− a0| ≤ ‖f − P ‖L1(T ) < ε, we obtain∣∣∣∣∣∣ 1
2π

∫ 2π

0
f (t)g(nt) dt − f̂ (0)ĝ(0)

∣∣∣∣∣∣ ≤ 1
2π

∫ 2π

0
|f (t)− P (t)|g(nt) dt + |a0 − f̂ (0)|.|̂g(0)| ≤ ‖g‖L∞ε+ ‖g‖L1(T )ε.

Here we used the fact that L∞(T ) ⊂ L1(T ).
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