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Abstract

This is an expository note based on the materials from the book ”Introduction to Harmonic Analy-
sis” by Katznelson.
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1 Fourier series

* We denote by R the additive group of real numbers and by Z the subgroup consisting of the
integers. The group T is quotient group R/2nZ.

* There is an obvious identification between functions on T and 27-periodic functions on R, which
allows the notions of continuity, differentiability, etc. for functions on T.

* The Lebesgue measure on T is the defined in the same manner, which is roughly understood
as the restriction of the Lebesgue measure to [0,27), and a function f is integrable on T if the
corresponding 27-periodic function, which we denote again by f, is integrable on [0,27r) and we
set

271
f f(ydt=| f(x)dx
T 0



1.1

* An important property of dt on T is its translation invariance, that is, for all tj € T and f defined

on T we have

Lf(f—to)dt= er(t)dt.

Fourier coefficients

. We denote bt L!(T) the space of all (equivalent classes of) complex-valued, Lebesgue integrable

functions on T. For f € L!(T), we put

Il = 5 | feoar.

The total mass of dt on T equal to 27t and thus (many of) our formula(s) would be simpler if we
normalized dt to have total mass 1, but we don’t do that in order to avoid confusion, so we have
pay by having the factor 1/27 in front of every integral. It is well known that L!(T) with ||- Izt (m)
is a Banach space.

. A ”trigonometric polynomial” on T is an expression of the form

m
P~ Z a,e™  where  meNN. (1)

n=—m
* The number n € IN above are called the frequencies of P.
* The largest integer n such that |a,|+|a_,| # 0 is called the "the degree” of P.

Since (1) is finite sum, it represents a function, which we denote again by P, defined for each t € T
by

m
P(t) = Z a,e™  where meN,teT. (2)

n=-m

. (Fourier coefficients) Let P be defined by (2), we can compute the coefficients a,, by the formula

1 ; 1 i 1 ifj=0,

a,=-—— | P(t)e" dt. —f et dt = " (3)
27 T 271 T 0 lf] = 0.

We shall consider trigonometric polynomials as both formal expressions and functions.

A trigonometric series on T is an expression of the form

(o]
S~ Z ae’ with the conjugate series is S~

n=—oo n

(~isgn(n)a,)e " (4)

gk

-0

where sgn(n) = 0 if n = 0 and sgn(n) = n/|n| otherwise.

. Let f € L1(T), motivated from (3) we define the nth Fourier coefficient of f by

?[f](n):]?(n):%Lf(t)e‘i”tdt for ne”Z. (5)

The Fourier series S[f] of a function f € L!(T) is the trigonometric series

S[f1~ i flmpe™.

n=-—oo

The series conjugate to S[f] will be denoted by S[f] and referred to as the conjugate Fourier series
of f. We say a trigonometric series is a Fourier series if it is the Fourier series of some f € L!(T). It
is easy to see that for f,g € L!(T) then we have the basic properties as following:



(a) (J”—i-\g)(n) = j?(n) +¢(n), and for any complex number a then (5&7)(11) = a;’\(n).

(b) If f is the conjugate of f, i.e., f(t) = f(¢) then (f)(n) = ]?(—n).
(c) Denote fi(t) = (t,f)(t) = f(t —s) for s € T, then f(n) = f(n)e .
(d) 1f(n) < =~ Lr If ()l dt = lfllp1(m)- Thusif f; — f in L'(T) then j/’]\(n) —> f(n) uniformly.

6. A relation between Fourier coefficient of f € L!(T) and its anti-derivative is given by:

Theorem 1.1. If f € L(T) with )?( =0, then the function F(t fo s) ds is continuous, 27-periodic
and f(n) = %f(n)for n=0.

Proof. It is obvious that F is (absolutely) continuous. The periodicity of F follows from

t+27 .
F(t+2rc)—F(t):J f(s)ds=2mf(0)=
t
For the second part, we fist assume f € C(T) N L(T), then F € C(T) by the fundamental theorem
of calculus and hence we can use integration by part to get

— 1

271 ) .
F(n)= ﬁjo F(t)e " dt = %f(n).

Now if f € L'(T), we can find fj € C(T) such that ||f; — fllp1(r) — O, then clearly

1
— | |dt<j|f] (s)lds < 27\f; = fllgr(ry — O

27

thus ’F\j(n) — f( ) uniformly, so F( n)= lim —f] Ilnj?(n) since E(n) — f(n) uniformly. O

j—oo N

7. (Convolution) Before going to define the convolution on T, we need the following theorem.

Theorem 1.2. Let f,g € L'(T), then for a.e. t € T the function s —> f(t —s)g(s) is integrable on T, and
if we define

1 .
= %J flt=s)gls)ds = heL'(T) with |lAllpm) <IIfllo gl m
and h(n) f (n)g(n) for all n € Z.

Proof. The function F : (t,s) —> f(t —s)g(s) is clearly measurable as a function of (¢,s), we have
1 2n 1 271 1 27
= (EL £(t=s)g(s) dt) ds= 5 {110l ds = Wl

By Tonelli’s theorem, F(t,s) € L!(T x T), and hence by Fubini’s theorem we have s — f(t —s)g(s) is
integrable as a function of s for a.e. t € T, and the order of integration can be switched as

1 271 1 27 1 27
iy [ ot o o [ i oo as) a

1 21 1 271
T o . (ﬁJ; f (t=s)g(s)| df) ds <|Iflleremllgller (m)

Finally we have

- 1 2n . 1 2n 27
h(n)z —j h(t)e"nt dt = — (_ f t—s ds)e—mt dt
0 0 0

27 27 27

1 2 27 in(t—s) ) .
_ o\ ,—in(t-s —ins —
—o [ (5 [ s gt as = Fogo
where all the change in the order of integration is justified by Fubini’s theorem. O



1.2

From that, we define the convolution f*g of two function f,g € L!(T) to be another L!(T) function:

2n . .

(0= | fle-9s1ds  has  Frgin) = Flng

Theorem 1.3. The convolution operation in L'(T) is commutative, associative, and distributive (with
respect to the addition).

Proof. For f,g € L'(T) by changing of variable we obtain

21 t 27
Frs0= 5= | f-og@ds= o | gt-wfdu= - | gu-wfwdu= (g

Now if f,g,h € L'(T) changing of variable we have

27 27
((f*g)*h)(t) ! L (L f(t—s—u)g(u)du)h(s)ds

T on 21 Jo
1 271 1 2n
(w=s+u) = = . (% . f(t—w)g(w—s) dw)h(s) ds

27 27
! <t—w)(ifo g(w—s)h(s) ds) dw = (f+(g+h))(1)

T on 0 27
Finally the distribution law (f + g)*h = f * h+ ¢ % h is obvious from the definition. O

Theorem 1.4. Assume f € L'(T) and ¢(t) = ei”tfor some n € N, then we have (f * @)(t) = ]?(n)ei"f,

Proof. Since f,¢ € L'(T) we have f »¢ € LY(R), and (f * ¢)(t) = »- Oan(t —s)el"s ds = f(n)el". O
As a corollary, if f € L'(T) then
m ) m . )
P(t)=) ae™ = (Prf)t)=) a,f(me™.
—m —-m

Summability kernels and homogeneous Banach spaces on T

. We shall see that fdetermines f uniquely and we show how we can find f if we know f First of

all let’s recall the two important properties of L!(T), that are
(H1) (Translation-invariant) If f € L!(T) and s € T then t —> f,(t) € L'(T) and Wfsllzrery = Nl -
(H2) (Continuity of translation w.r.t L' -norm) For f € L'(T) and s € T then lim,_ ||f; = |11 (r) = 0.

The property (H2) follows from the fact that it is true for continuous functions, and by a density
argument (continuous functions are dense in L!(T)) we obtain the result.

. (Integration of vector-valued functions) Consider a Banach space (X,||-||) and F be a X-valued

function, defined and continuous on a compact interval [a,b] C R. We define the (Riemann) inte-
gral of F on [a,b] in a manner completely analogous to that used in the case of numerical functions,
namely for any partition

Mz

Py={xp=a<x;<...<xy41 =b} we define Spy = (x]»H—xj)F(xj).

j=0

The integral is defined by

N—00

b
J F(x)dx= lim Sp,
a



where the limit is taken in X-norm, and the subdivision {x; : j = 0,1,...,N + 1} becomes finer
and finer, i.e., as N — oo we have max;<j<y |xj;1 — xj| — 0. The existence of such limit follows
by a simple argument , by constructing a sequence of partial sums which is Cauchy (taking the
common refinement of two partitions).

. A ”summability kernel” is a sequence {C,} of continuous 27m-periodic functions satisfying:

(S1) L (7"

(T de=1.

(52) sup,,enlICallr(my < C.

(53) For all 0< & <7 we have lim,__q, [2"°[C,,(t)| dt = 0.

A positive summability kernel is one such that C,(¢) > 0 for all ¢ and n. We consider also families
C, depending on a continuous parameter r instead of the discrete n. We state the following lemma
in a general setting with vector-valued functions.

Lemma 1.5. Let (X, ||-||) is a Banach space and ¢ : T — (X, ||-||) is continuous, then for any summability

kernel {C,,} we have
27

lim 1 Cu(t)p(t) dt = @(0).

n—oo 270 0

Proof. Since ¢ is continuous on compact set T, it is norm-bounded ||@(t)|| < C for all t € T. For
€ >0, there exists 6 > 0 such that if t € T and |¢| < 6 then |p(t) — ¢(0)| < €, then we have

o Ozn G0 (1) - 9(0) di = o a0 = (01 L :H G (1)~ (0)) d.
On the other hand
% j{teir:ltka} Cu(t)(p(H) - @(0)) dt| < 2¢
and by (S3) we have
1 [ C (b
EL Ca(B)( (1) - @(0)) dt| < EL |C.(t)| dt
as n — oo, which concludes our result. L)

As a consequence we have

Theorem 1.6. Let f € LY(T) and {C,,} be a summability kernel, then
271
f = lim CaO)fi()dt  in LY(TD).

n—oo

Proof. Let (X,||-|) = (LI(TF),||-||L1(T)) and ¢(s) = fs(-) for s € T, the result follows from lemma
1.5. O

The vector-valued integral above can be understood in the usual sense, by the following lemma.

Lemma 1.7. Let ¢ € C(T) (we can relax this condition) and f € Ll(T) then

1 2n

Ct)fe(-)dt = (C+f)()

2 Jg

as functions in L'(T), where on the left hand side we have the vector-valued integral.



Proof 1. Assume first that f € C(T), we have

1 27

. 1
3 )y CORO= dm 5 ) i sty

where the limit is taken in L!(T)-norm and {sj} — 0 means the subdivision {s;} of [0, 27) becomes
finer and finer. Note that if f € C(T) then by Riemann sum approximation as usual (which holds
for continuous functions, that’s why we need ¢ € C(T)) we have

1 2n

CN0= 50 | COfE=s)ds= tim ) (570 -5)005)f (0=

{sj}—0 27

uniformly for t € T, thus the lemma is proved if f € C(T). The case f € L'(T) follows by a density
argument since C(T) is dense in L!(T) under the L!-norm. O

Proof 2. The proof is quite simple if we use some measure theory facts instead of approximating
the integral in the Riemann sense. For a continuous function ¢ : [4,b] — (X,]| - ||), then for any

A € X* we have ) )
A(J (1) dt) = J ANog(t)dt
a a

and the fact that if A(x) = A(y) for all A € X* implies x = y, based on a simple application of
Hahn-Banach theorem. For A € L'(T)*, since (L')* = L%, there exists a unique g € L*(T) such that

1
jo t) dt for all ¢ € L'(T), thus

1 27 1 27
A(_n (:(t)ft(')dt):% COA(f(-1)at

JO
1 27

27
_ L C(t)(L g(u)f(u—t)du)dt

271 J,

1 27 27 1 27
(Fubini’s theorem) =— g(u)( C(t)f(u—t)dt) du:—f g(u)(C*f)(u)du:A(C*f).
21 Jo 0 21 Jo
Thus the proof is complete, note that in this way we don’t need to use the continuity of C. O

Using this lemma, for any summability kernel {C,,} we have {,,+ f — f in L}(T).
. (Fejer’s kernel) The Fejer’s kernel is defined by
- i
_ _ ijt
=) (1=
Jj=—n

It is clear that ||XC, || 1 (1) = 1, the first and the third properties of a summability kernel is verified

using the formula sin(a)—sin(b) = 2cos(”+b )sm( ) Indeed, let D,,(¢) = Z}-“:_n e'l*, which is called

”Dirichlet kernel” (not a summability kernel), we have

D, (t) = Z 17t—1+ZZcos]t L- 1[sm]+ )l‘—Sln t] Sm t
= (sm 5) sin %
Thus
n n n ;
- £\l i ) £\l al— ez(n+1)t
_ i\t — “ain O > ikt | _ [ain & 2
(n+1)XK,(t) = Z(n+1 |]|)e —;Qk(t)—(smz) Im[ez ;e l_(smz) Im[eZ T |
j=—n = =

It is easy to compute the last sum at get

. 2
1 A 1—el(n+)t 1 [1-cos(n+1)t 1 sm(Tl)t
j{,l(t) = m(slnz) Im m 7 = = .
2

t .
€2 —e2 n+1 2s1n2(%) n+1 sin &




We adhere to the generally used notation and write o,(f) = X, = f and o, (f)(t) = (K, = f)(¢). It is
clear from theorem 1.4 that

ol F)()= X, )= ) (1 - %) e, ©)

j=-n

We already knew that o,,(f) — f in L!(T) for every f € L'(T). Note that o,(f) is a trigonometric
polynomial, thus from this fact we deduce that trigonometric polynomials are dense in L!(T).

Theorem 1.8 (Uniqueness). If f € L'(T) has f(n) =0forallneZthen f =0.
Proof. It is obvious from (6) and the fact that o, (f) — f in L'(T). O

Theorem 1.9 (Riemann-Lebesgue lemma). If f € L'(T) then lim|n|_)oo]?(n) = 0. Moreover, if K is a
compact subset of L' (T) then limy, o (supfGK |]?(n)|) =0.

Proof. Let P be a trigonometric polynomial with ||f — Pl;1(r) < ¢, then for n € Z with [n| > deg(P)

we have P(n) = 0, hence |f(n)| = |(f = P)(n)| < lf = Pllp1(m < €. If K is a compact subset of L' (T) and
€ > 0, there exists a finite number of trigonometric polynomials P, ..., P, such that for any f € K
there exists j € {1,...,m} such that ||f — Pj[[;1() < &. The argument follows similarly as before with
|n|>max{deng:j:1,2,...,m}. O

In summary, {X,} is a positive summability kernel which possess the following properties:

lim ( sup fKn(t)):O for any 0<o<m (F1)

=00\ 5<t<2m—5

and

. For f € L'(T) we denote by S,,(f) the n partial sum of S[f], that is

SFO=SuF= ) Fel, e,  Sy(f)=Dyxf.

j=n

We can see that

which are the Cesaro means of S,,(f). Cesaro mean theorem says that if S,(f) — g in L'(T) as
n —> oo then o0,,(f) — g in L}(T) as n —> co as well, which follows that f = g. Since the Dirichlet
kernel {D,} doesn’t satisfy (S2) or (S3), this explains why the problem of convergence for Fourier
series is so much harder than the problem of summability.

. (Homogeneous Banach spaces on T) A homogeneous Banach space on T is a linear subspace
B c LY(T) having a norm ||- ||z > || - |1 under which it is a Banach space, and having the following
properties:

(H1) (Translation-invariant) f € B and s € T implies f; € B and |||z = ||f]ls-
(H2) (Continuity of translation) For all f € Band s,t € T we have lim;_,||f; — f;|[5 = 0.

If we have a space B satisfying (H1) and we want to show it satisfies (H2) as well, it is sufficient to
check the continuity of the translation on a dense subset of B.

Lemma 1.10. Let B C L(T) be a Banach space satisfying (H1). Denote by B, the set of all f € B such
that s — f; is a continuous B-valued function, then B, is a closed subspace of B.



Proof. Assume f € B, where the closure is taken in (B,||-||z). Given & > 0, there exists g € B, such
that ||f — ¢gllp < &, then
fs =l < IIfs = &llp +lIgs — &llg +11g = fll = 211 — gll5 + 185 — gllp < 2¢ +Igs — glI

which can be made less then 3¢ if we choose s small enough. O

Examples of homogeneous Banach spaces on T,

(a) C(T)-the space of all continuous 2m-periodic functions with the norm

£l = 11 lloo = max|f(#)l.

(b) C"(T)-the subspace of C(T) of all n-times continuously differentiable functions (n € IN) with
the norm

n
1
n = - (k) .
Ifllesim = ) zymax|f (o)
k=0
(c) LP(T), 1 < p < co-the subspace of L!(T) consisting of all the functions f for which IT [f ()P dt

is finite with the norm
1 27 %
= p
e e O

Checking (H2) for (a),(b) is equivalent to the fact that continuous functions on T are uniformly
continuous, while checking (H2) for (c) is similar to the L!-case. Now we extend some results to
the homogeneous Banach spaces on T.

Theorem 1.11. Let B be a homogeneous Banach space on T, let f € B and {C,,} be a summability kernel,
then ||C,* f — fllg — 0 as n — oo.

Proof. By definition we have

21

lim | co)fe) de- % D (sj1 =s)Cls))f;

{5]}—>0 27 0 -

B
where the limit is taken in B-norm and {s;} — 0 means the subdivision {s;} of [0,27) becomes
finer and finer. Since ||-||;1 <||- ||, it happens that

1 21 21

COf() di = — e ar

%0 27

B-valued LY(T)-valued
By lemma 1.7 they all equal to C * f as a function in B. The conclusion now follows from lemma
1.5 with @(s) = f; = f(-—s). O

Theorem 1.12. Let B be a homogeneous Banach space on T, then the trigonometric polynomials in B
are everywhere dense.

Proof. For every f € Bwe have g,,(f) — f in (B,|-||g), and since 0,,(f) is a trigonometric polynomial
in B, we have the conclusion. O

. (dela Vallée Poussin kernel) The de la Vallée Poussin kernel is defined by
Vu(t) = 2K 11 (£) = Ko (2).

It is obvious that {V,} is a summability kernel from the fact that {X,} is a summability kernel, it is
a polynomial of degree 271 + 1 having the property that V,,(j) = 1 if |j| < n + 1. It is therefore useful
when we want to approximate a function f by polynomials having the same Fourier coefficients
as f over prescribed intervals (namely V, = f).



8. (Poisson kernel) For 0 <r <1 out

- >, 1-¢2
P,(t):Zrlfle”t:1+22r]cos(jt): d
=1

_ 2°
77 = 1-2rcost+r

1.3 Point-wise convergence of 0,,(f)

1. We have already known that if f € L!(T) then o,(f) — f in the topology of any homogeneous
Banach space that contains f. In particular if f € C(T) then o,(f) — f uniformly. In case f is not
continuous, we have to reexamine the integrals defining o,(f) for point-wise convergence.

Theorem 1.13 (Fejér). Let f € L(T).

(a) Assume (Fejér condition)
hhmo (f(to +h)+ f(tg— h)) exists, which can be + oo

then )
lim 0, (/)(to) = 5 fim (£(to+h)+ flto=h)).

n—oo
In particular, if ty is a point of continuity of f then o,(f)(ty) — f(to).
(b) If every point of a closed interval I is a point of continuity for f, o,(f)(t) — f(t) uniformly on I.

(c) If for a.e. t, m < f(t) then m < 0,(f)(t). If for a.e. t, f(t) <M, then o,(f)(t) < M.

Proof. We assume first that f(ty) = limj,__ w is finite. From (F2) we have

o)~ o) = 5 [ Kol (0051~ ) ds
_1 fto+s)+f(to=s) - )
n J;o,a]u[a,n)jcn(s)( > f(to)] ds.

Given ¢ > 0, we choose 6 > 0 such that |h| < 6 implies |w —f(t0)| < g, then we have

L flto+s)+flto=s) ¢
R e Y

Tt

ds<e. (7)

Now from (F1) we can choose 1y € IN such that n > n implies supy;.,,,_s X, (t) < €, which implies
1 (" (to+s)+ f(to—s) 2
=[P =S
T Js 2

From (7) and (8) we deduce that

|on(f) = f(to)| < e +ellf = F(to)llaem)

which proves part (a) when f(ty) is finite. It is easy to see that the same argument holds when

f(x¢) = £oo. For part (b), if f is continuous at every points in a closed interval I then f is uniformly
continuous on I, then we can modify the proof above as given ¢ > 0, there exists 6 > 0 such that

fefeeh) g,

ds < e||f — f(to)llr (). (8)

|h] < o = sup
tel

<é¢

and the argument above can be applied again to get (b). Part (c) follows from the fact that X, is
positive and [|X,,[|p1r) = 1, indeed if m < f a.e. then

1

o)) =m= 7o | Kn(s)f(t=s)—m)ds=0

and similarly for the case f < M. O



2. As corollary, if f € L(T) is continuous at ¢y and if the Fourier series of f converges at t, then its
sum is f(tp).

3. The theorem still valid if we replace o,(f) by C, * f where {C,,} is a summability kernel which sat-
isfies two properties (F1) and (F2). In particular, the Possion kernel satisfies all of these require-
ments and the statement of Fejér theorem remains valid if we replace o,,(f) by the Abel means of
the Fourier series of f,

4. The Fejér’s condition

flto) =

NI>—‘

Tim ((t0+ )+ f(to 1)) o

implies that

to + S + f 0~ S ~
- f(to)
The condition (10) is far less restrictive and more natural for summable functions, since it doesn’t
change if we modify f on a set of measure zero.

li
hino h

ds = 0. (10)

Theorem 1.14 (Lebesgue). If (10) holds then o,(f)(to) — f(to). In particular o, (f)(t) — f(t) a.e.

Proof. We have

it~ = [ s LI fg | s
[0,5]U[6,7)

. s\2
(5)= 1 (sm(7.1+51)7) Smin{n+1,(nn—2}

n+1 sin 5 +1)s2

Recall that

=

where we have used sin 5 > = for 0 < x < 7. From that we have

1 (™ Flto+s)+flto—s) - , 72 ) f = Fto)llem
— — < 1
“L ZKH(S)‘ 7 f(to)] ds <minqn+ 105 -
which converges to 0 if (1 +1)6%> —> +oo as 1 —> oco. Let’s pick & = n~/4, we have left to show that
n1/4
£ to— =
lim lf xn(s)(f(o””f(o S)—f(to)) ds = 0. (11)
n—oo 7T J 2
Let’s define for simplicity the function
h - ~
q)(h):J- fllo+9)+ flo=) _ 7,0 45 then 1im 2 =g
0 2 h—0 h

For given ¢ > 0, there exists 1y € N such that ®(s) < es for 0 < s < n~V/4 for all n > 1. Also

e e (1 R M e R B (S PR
as n — oo by (10). Now
= 0 o-h)
%J;_l j{n(s)‘f(%"‘s);‘f(to —Ft) ds<_J St + +f 0=h) _ Fity) slzds

Using a generalized version of the integration by parts formula we obtain

-1/4 1/4

-1/4 s=n -
" (to+h)+fto=h) - |1 D(s) o (7 D(s)
L f ! 2f ) _f(to) S_zdS: T (5_25)‘:_1 +—TCJ;_1 S_;ds

1 n+1 n+1

n+1
-1/4

2re (" 1
32715( " )+ e — ds < 67te.
n+l) n+1]J),1 s2

The proof is complete. O

10



As a consequence, if the Fourier series of f € L!(T) converges on a set E of positive measure, its
sum coincides with f almost everywhere on E. In particular, if a Fourier series converges to zero
almost everywhere, all its coefficients must vanish.

1.4 The order of magnitude of Fourier coefficients

Two things we have known about the size of Fourier coefficients are if f € L!(T) then ||_?\||Loo(’]:[') < ||ﬂ|L1(T)

and the Riemann-Lebesgue lemma: lim|n|_mj?(n) =0.

1. Can the Riemann-Lebesgue lemma be improved to provide a certain rate of vanishing of f(n) as
|[n| — o0? The answer is no.

Theorem 1.15. Let {a,},cz be a even sequence of non-negative numbers tending to zero at infinity.
Assume that for n > 0 we have
Ay 1+ 0,41 — 2[1” > 0. (12)

Then there exists a non-negative f € L'(T) such that ]?(n) =a,.

2. A basic difference between sine-series and cosine-series is given by:

Theorem 1.16. If f € L'(T) and f(|n]) = —f(~|n]) > 0 for all n € Z then

i%f(ﬂ) < 0.

n=1

Proof. Assume J/’\(O) =0, let F(t) = Jotf(s) ds, by theorem 1.1 we have F € C(T) with l?(n) = %A(n)
for n # 0. Since F is continuous, we can apply Fejer’s theorem 1.13 to obtain

m

lim o,,(F)(0)= lim (1— " )%f(n):F(O).

m— oo m— oo m+1

Le.,
S no\lz o — —
lim 2 2 (1 - )Ef(n) = i(F(0)-F(0)) = ~iF(0).
Since %]"\(n) >0 for n=1,2,... the proof is complete. O

3. We now turn to some simple results about the order of magnitude of Fourier coefficients of func-
tions satisfying various smoothness conditions.

Theorem 1.17. If f € L'(T) is absolutely continuous, then f(n) = 0(%) as |n| — oo.

Proof. f’ exists and f’ € L'(T) with ]?(n) = %f’(n), and thus ]?(n) = o(%) since ]?’(n) — 0 as
|n| — oo by Riemann-Lebesgue lemma. O

Similarly, if f is k-times differentiable and f(k_l) is absolutely continuous then ]"\(n) = o(n7¥) as
|n| — co. Similarly, we have:

Theorem 1.18. If f is k-times differentiable and f*=1) is absolutely continuous then

7)< min [RITRYEN)

Tosj<k  |nf
In particular, if f € C®(T) then

_ Mg
7] < min Ilf “L‘ ()
0<j  [nf

11



1.5 Fourier coefficients of linear functionals

1. Let B be a homogeneous Banach space on T and let’s assume that ¢ € B for all n € Z, we denote

by B* be the dual space of B. The Fourier coefficients of a functional y € B* are defined by

W) = p(ei™t) = (e, p), nez. (13)

The Fourier series of y is defined by

S~ Y e,

n=—oo

It is clear that [f(n)] < ||pllz-]le’ )|l 5.

1_

;=1 A function y € L9 can be

2. For 1 < p < oo, recall that (L?)* = L7 for 1 < g < co where [l)+
identified with the linear function

1
P € map o) = s = 5 [ P09 dx
The definition (13) reads

1

— 1 — 4
Hn) = (™, wypa, e = %L et pu(x) dt = 2 o p(x)e ™ dt

which is consistent with our previous definition of Fourier coefficient for a function.

3. (Parseval’s formula)

Theorem 1.19 (Parseval’s formula). Let f € B and y € B*, then

(o= lim Z(l— Py (14)

Proof. From theorem 1.11 we have o,(f) — f in B norm, and since o,(f) is a trigonometric poly-
nomial, which gives us

k k
H(SK) = (S¢S <Z )= PR w= Y O

j—=—k

Thus we have

1 & n k o il \= .=
W= LS = el = ) ) T Z( L )Fi
Taking the limit as n — oo we obtain the result. O

If the series on the right hand side of (14) converges then

(0= Jim, ) (1= Fo (15)

From that we have the uniqueness theorem

Theorem 1.20 (Uniqueness). If y € B* and j(n) = 0 for all n € Z then p = 0.

12



4. For y € B" we define

Y e (~Dy*pr),
=Y (1= et (~ %)

We still have

They are elements of B* by the actions

(55,0060 = 5 [0S dt—Zw( [ e a) =Y i

—n

and similarly
n

il \=.==
o = 5 [ stimatian= (1 JFi
for all f € B. We have some remarks:
(a) From the Parseval’s formula 1.19 for any ;4 € B* then o, (u) BN u in the weak” topology of B*. If
B = C(T) then as a measure, {f,0,(f)) = 5 er do,(f) which means

n

o0 =) (1= et .

—n
We also observe that from that o, (y) < m where m is the Lebesgue measure.

(b) The linear operator $,, : B— B maps f + S,(f) is bounded, since for f € B and recall that
eint €B,

1S, (F)llg =

Y e

]_—n

< Z|f (- ||elff||B<(leelﬂ||3]||f||p <[lee”tllg]llf||3

B =

(c) The linear operator $;, : B* — B* map p +— S, () is the adjoint operator of $,,, since for any
y € B* we have for all f € B then

£ = Salw) = ) FORGAG) = (SulF)r ) = po (S) (f)
j=—n

and thus $, € B* with ||S ||~ = [|Sll5-.

(d) Similarly, ¥, : B— B maps f + 0,(f) belongs to B* and ¥, : B* — B* maps y +— oy,(p) is
the adjoint of X, thus ||}, ||g = ||Z,lp-- Indeed we have [|Z,|[g+ = ||Z,]|p- = 1 since

loa(hls = |55 [ atrrte—ry

thus ||X,||g+ < 1. On the other hand by testing with ¢ =1 in B we have

1 1 . ‘
o [ sunar] =|o [ e at] 1 = 1,
27 T " B 27 T "

1
< 2—_[ KON fllp dt =K1l fllz = lIf 15
T Jr

Hoh(l)”B =

Thus ||X,[g+ > 1.

13



Theorem 1.21. If u € B, the linear operator X}, : B* — B* maps

n .
pr— X (1) =o0,(p) which has its Fourier series is Z(l - %)ﬁ(j)eijt

satisfies || X ||p» = 1. In particular ||o,(4)llp < ||pllp- for all n € Z.
5. Parseval’s formula enables us to characterize sequences of Fourier coefficients of linear functionals.

Theorem 1.22. Let B be a homogeneous Banach space on T. Assume that " € B for all n € N. Let
{a,,}nez be a sequence of complex numbers, then the following conditions are equivalent:

(a) 3 pe B, ||yl < C such that u(n) = ay, for all n € Z.
(b) For all trigonometric polynomial P then

Y P(nya,

nez

< C|IPllp-

Proof. Assume (a) holds, then for a trigonometric polynomial P, we can assume

m o
.. — f — <n<
P(h)=) et = Pln= {C” Boomsnsm

0 elsewhere.
—m

Thus

m

) Py,

—-m

) P,

neZ

= (P, w)| < CIIPIIg

by Parseval’s formula 1.19 we have

m m
. nl \5, — -
(P,uy = mlgl}Oo Z(l ~ 1 P(n)a, = ZP(n)an.
—m —m
Now assume (b)holds, we can define the linear bounded functional on the set of trigonometric
polynomials in B by
A:Pr+— Zﬁ(n)@
nez
Since the set of all trigonometric polynomials is dense in B, A extends uniquely to A € B, then
clearly ||A]|p- < C and clearly

A(n) = (", Ay =a, = a,.
O

Corollary 1.23. A trigonometric series S ~ Y .7 a,e'™ is the Fourier series of some y € B*, ||ullg- < C
if and only if ||0,,,(S)||g- < C for all m, here 0,,(S) denotes the element in B* which has the Fourier series
15 m .
Z 1- il a;ellt,

m+1]"

—-m

Proof. If u € B* with ||ullp- < C has its Fourier series is S[u] ~ ¥ ,,cz a,¢"™ then u(n) = a, for all
n € Z, then from theorem 1.21 we have

om(S)=om(p) = o)l = llom(pllp: =I5 (Wllp < Z5llpellpellp < C.

Conversely, if ||6,,,(S)|lp- < C for all m € Z then by Banach-Alaoglu theorem, there exists y € B*
such that 0,,(S) — u in the weak” topology of B* as m — oo (upto sub-sequence). It is clear that

14



|lpllg- < C as well and by theorem 1.22 we have for all trigonometric polynomial P then

(P,ji) = Tim (P,0,,(S))

1 ST £
= lim TP(t)om(S) dt= lim_ (1 —m—H)P(])aj = Z P(j)a;.
—m —deg P
On the other hand the Parseval’s formula reads
| | deg P
Py = lim Z(l - Pui= ) P
—deg P

This is true for all trigonometric polynomials P, hence the result follows u{n) =4, forallne Z. O

. In the case B = C(T), the dual space B* is identified with M(T)-the space of all Borel measures on
T by mean of the coupling (Rieze’s representation theorem)

<f.y>=erﬁ forall — feC(T)

We shall refer to Fourier coefficients of measures as Fourier-Stieltjes coefficients and to Fourier
series of measures as Fourier-Stieltjes series. The mapping

fr— —f(t)dt is an isometric embedding of LY(T) in M(T).

27

Observe that if y = 5= f dt then
i =G0 = o [ g0 ar= oL [ o ai=Fim,

. A measure y is positive if y(E) > 0 for every measurable set E, or equivalently er dyu > 0 for all

non-negative f e C(T). If py << m,ie p= 2n (t) dt for some f € L'(T), then p is positive if and only
if f(t) > 0 almost everywhere.

Theorem 1.24. A series S ~ Y,z a,e'™ is the Fourier-Stieltjes series of a positive measure if and only
ifforallne ZandteT
n .
Il ijt
0,(S)(t) = ;(l - aje’' > 0.

Proof. If there exists y € M(T) such that S = S(y) and p > 0 then u(n) = a,, for all n € Z and if
f € C(T) with f >0 then

(ot = 5 [ st ae= )15 )i

while f > 0 implies 0,,(f) =K, = f = %ITIKn(s)f(- —s)ds >0 as well since K, > 0, thus

n . n .
- LNzt oy il \ 7. ==
0 < {oulf), 1) = Z(l = | Pl = Z 1= | FGRG)
and thus (this can be explained also in term of adjoint operator)

(frou(p) ={an(f) ) 2 0

for all non-negative f € C(T), hence o,(y#) > 0 on T. Conversely if ,,(S)(t) > 0 on T, as member of
M(T) = C(T)* we have

low(S)luter =—fan 1) dt = a,

15



for all n € Z, thus theorem 1.23 implies that there exists y € M(T) with [|ully(r) = ao such that
Hn)=a,, ie., S =S5(u), and clearly by weakx convergence o,(p) = uin M(T) we have

(frm) = n@[ﬁ(ff 0,(5)) =0
for any non-negative f € C(T). O

The condition 0,,(S)(t) > 0 for all n € Z can be replaced by 0,(S)(¢) > 0 for infinitely many n’s.

. (Characterization Fourier-Stieltjes coefficients of positive measures as positive definite sequences)
A numerical sequence {a,},cz is "positive definite” if for any sequence {z,} of complex numbers
having only a finite number of non-zero terms we have

E An-mZnZm 2 0.

n,m
It is obvious that with the sequence z; =1 and z,, = 0 elsewhere we obtain ay > 0.

Theorem 1.25 (Herglotz). A numerical sequence {a,},cz is positive definite if and only if there exists
a positive measure y € M(T) such that u(n) = a,, for all n € Z.

Proof. If a, = u(n) for some positive y € M(T) then
a, = ﬁ(n) = <eint,’4> — J. emint ﬁ
T

and hence for such a sequence {z,} only has finitely many non-zero terms we have

2
-— _ —int jimt _d__ —int
AymZnZm = e ez, z, dy = e Mz,
mn2 T T

m,n n

dpu>0.

Conversely, if {a,},cz is a positive definite sequence, we write S ~ Y . a,e". For any N € Z and
t € T we define
_ e ifn| <N,
" l0  if|n|>N.

Then we have
N N
— _ i(n—m)t
E Am-n2nim = E E Am-n€ { ) .
m,nez m=—N n=—N

Let k = n—m and re-write the formula above in terms of sum in k, we obtain

2N 2N

_ , Ik| ,

0< E ApynZnZm = E (2N +1—|k|)age™ = (2N +1) § (1-2N+1 are™ = 2N +1)oan(S)(1).
m,neZ k=-2N k=-2N

It is true for all ¢ € T and for infinitely many #’s, thus theorem 1.24 concludes that there exists a
positive measure y € M(T) such that S = S(p). O

Theorem 1.26. If {a,} is positive definite then |a,| < ag, a_y = ay and {an - %} is positive defi-
nite.

Proof. Take zy =1,z5 =z and z, = 0 elsewhere, we have

Zun_mznz_m: ao(l + |z|2)+aNz+a_N22 0 for all zeC.

m,n
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Set z=1 we have 2ag+ay +a_y >0, thus ay +a_y € R. Set z =i we have i(ay —a_y) = 0, which
means a_y = ay. Thus we can take z € C such that

zay = —|an| = 2ag9—2|an| =0 = lay| <0 forall N € Z.

This fact can be obtained obviously from Herglotz theorem 1.25, since with the positive measure
p satisfies (1) = a,, then

lal = 7)) < L (4| = u(T) = p(0) = aq.

Finally let du; = e't dpanddy_; = e it dp be measures in M(T), we then have ji; (n) = u(n+1) = a1
and pi_{(n) =un—-1)=a,_q, let

et ye”

it
_HitHa 5 )dy:(l—cost)dyzo

v=pu > = dv:(l—

1+
and clearly V(n) = a, — “=13%L_ As a consequence, we have

Ap-1+ans1 a1 +a

)| = fa, - =12

< [770)| = fag -

' =ay—Re(ay).

. (Universal multipliers - convolution)

Theorem 1.27 (Universal multipliers). Let B be a homogeneous Banach space on T (contains ety and
y € M(T). There exists a unique linear operator A on B having the properties:

(i) IAll,B) < lkllaer)-
(ii) Af(n)=7n)f(n) forall f €B.

Proof. If an operator A € L(B, B) satisfies (i) and (ii) then for any trigonometric polynomial

m
P(t)= Z P(n)e'™, ie., P(n)=0 for |n| >m

n=-m

the corresponding Fourier series of the element AP € B is

S[AP] ~ Z/ﬁ(n)ei"f - Zmn)ﬁ(n)e""f.

—-m

As B c L!(T), the uniqueness theorem 1.8 concludes that the action of A is uniquely determined
on the set of trigonometric polynomials on B, and hence on B since (i) and the fact that the set of
trigonometric polynomials is dense in B. For the existence of A, let’s define

m
AP(t) = Zﬁ(n)ﬁ(n)ei”t for any trigonometric polynomial P in B.
—m

It is clear that A defines a linear operator on the set of trigonometric polynomials on B, we have
left to show that [|Al|g- < ||pllar(T). We observe that if y < m, i.e., dy= %g(t) dt for some g € C(T)
then since (1) = g(n) for all n € Z, we obtain

AP(t) = Z;ﬁn)ﬁ(n)ei"f - Z(ﬁ)(ﬂ)e’i”t =g+ P(t)

and by lemma 1.7 we have g+ P can be seen as the B-valued integral

1 1
g*P=5—| gls)k()ds = |IAPlp=llg*Plls < (—f lg(s)l d5)||P||B = llpllaeemy - IP1lp
T JT 2n T
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10.

and thus [|Allg- < [|plla(r)- In the general case, recall that

do,(j) = Sg.(t)dt  where gAﬂz}ib—nT yw>WeC<>

satisfies o, (y) BN p in the weak” topology of M(T), also ||o,(p)llam(r) < llpllmm) by theorem 1.21.
Finally by theorem 1.4 we have

n

_ il e_ Y, i j
<g~Pﬂw—§;@—n+1yw><)ﬂ }:@—n+1yw)()ﬂ

if we choose n > |m| = deg P. Thus

Z( Il )A(] ()mt

—-m

znt

lIgn P = AP|jg =

_)O

B

as n —> oco. Thus since [|g, * Pllp < [|pllp() for all n € IN we obtain [|[AP||g < [|ulla(r), and the
extension to all f € B is obvious since the set of trigonometric polynomials in B is dense in B. [

Corollary 1.28. Let f € Band p € M(T), then {/’I(n)]?(n)} is the sequence of Fourier coefficients of some
function in B.

In view of these above result, we shall write p* f instead of Af, and refer to it as the convolution
of pand f.

(Convolution of a measures and a linear functional using Fourier series) For y € M(T) we define
p* € M(T) by
#*(E) = p(—E) for all Borel sets E, or equivalently, by j f(t)ydu = f f(=t)ydu forall feC(T
T T
It is clear that _
pH(n)=pun) for nez

Let A € L(B, B) be the operator which maps f —> Af = u= f previously. If A* € L(B*,B") be the
adjoint of A, then for any v € B* and f € B by Parseval’s formula we have

n—oo

Y ljl N I I FONT
tim Y (1= 220 P 07 Mfw<wa—ng, VL7 A G)
—n
Since it is true for all f € B, by testing with trigonometric polynomials in B we deduce that

Av(n) = An)vin) = ;}(n)?(n) for all neZ.

In other words, A*v is the element of B* which has its Fourier series is

S[A*v] ~ Z}l (n)V(n)e int

nez

#

We denote this element as A*v = y* +v. We have proved the following theorem.

Theorem 1.29. Let B be a homogeneous Banach space on T (contains e") and B its dual. If ue M(T)
and v € B*, then there exists a unique element in B*, denoted by v which has its Fourier series is

Slpxvl~ ) Fmwim)e™,

neZ

Moreover, |luxvlp < lulla(m)llvlp-

18



11.

12.

In particular, for two measures y, v € M(T) there exists a unique measure y*v € M(T) which has
its Fourier series is (Fourier-Stieltjes series of the measure)

Slpxvl~ ) Fnmwin)e™.

nez

Of course we can define the convolution of two measures y,v € M(T) in a direct way. For any
f € C(T), the integral

1= | £iees) duvarts

is well-defined and f +— I(f) defines a bounded linear functional on C(T) since [I(f)| < ||pllarcm)lIVIIa(T)-

By Rieze’s representation theorem there exists a unique measure A € M(T) such that
I(f):J- f(t)d/\(t)zf f(t+s)du(t)dv(s) for all f e C(T).
T T2
By taking f(t) = e we obtain I(n) =u(n)v(n) for n € Z, thus A = p+v. In other words,

J fd(y*v):J- f(t+s)du(t)dv(s) for all feC(T)
T T2
or by taking a sequence of continuous functions which converges to xg for a closed set E, we have
(u=v)(E) :f H(E —s)dv(s) for all Borel set E.
T

By regularity it is true for all Borel set E.
A measure p € M(T) is discrete if p = Z}Ll ajésj where {a;} are complex numbers.

Lemma 1.30. Ifv = Z;’zl ajos; then IVllper) = Z;’:l la;l.

Proof. First of all, if v = ady for a € C\{0} then with u = |a|6y we have v <« p, thus by Radon-
Nikodym theorem

dV:d—Vd’,l — V(E):fd—vd‘bl: a lf O€E, - J d_]/_i dy:O
du pdp 0 if 0¢E p\dy |af

for all Borel set E, which implies j—; = ﬁ p-a.e. and hence the total variation of v is, by definition

a .
dlv| = \m\ du=lalsy = ladollucr = lal.

For the general case, we can assume {s;}"

j=1

dv J‘dv J = a; dv  « 4
dv=—14d = v(E)= | —= —xgla;)|d = —= —— X1 —a.e.

Thus

are disjoint. Let = 2?21 |a]-|55]. then clearly v <« p, so

dlv| =

noog. n
Zﬁxw dp = Il =) lajl
j=1 j=1

A measure p € M(T) is continuous if u({t}) = 0 for every t € T, equivalently p is continuous if
t+1

lim dlyl=0 for every t € T.
1—0J—y
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Theorem 1.31. Every measure y € M(T) can be decomposed to a sum y = p.+py where p, is continuous
and pg is discrete.

If u € M(T) is a continuous measure then for any v € M(T), from the formula

e = [ e avts

we deduce that y = v is continuous. Since 9, * 0y = 0,44y, if y = 27:1 ajés]. and v = 2?21 jét]. then

n
Hrv = Z ajbk65j+tk.
jk=1

Let u= pc + pg and p* = u? + ]/IZ be the decompositions to continuous and discrete parts, we have

o = (e pl 4 e pl+ s il )+ (pa = )

(pxp?)c

Assume that p; = Z;’Zl a;o;, then wh= ;’Zla_jé_sj and thus p* p#({0}) = ;’:1 Iajlz.

Lemma 1.32. Let y € M(T), then
et (o)=Y (il

teT

In particular, p is continuous if and only if (p* pu*)({0}) = 0.
The discrete part of a measure y € M(T) can be recovered from its Fourier-Stieltjes series.

Theorem 1.33. Let pe€ M(T) and t € T, then

pt) = lim 3 e,

= lim
m—oo 2m + 1

Proof. For t € T, the function

1 1 o
Pu(s) Dolt=3) = Y el
—-m

T om+1 2m+1

is bounded by 1 and tends to zero uniformly outside any neighborhood of . Now the measure
v =p—p({t})o;
satisfies v({t}) = 0. Let’s recall that the total variance of complex measures can be computed by
n n
[v|(E) = sup Z|V(Ei)| :nelN,Ey,..., E, disjoint, E = UEj .
j=1 j=1
From that we obtain |v|({t}) = 0. Thus by dominated convergence theorem we have

t+1

lim dlv| = hmO X(t-n,t+n) dlv| =1v|({t}) = 0.
T

1n1—0 t-n n—

Thus we have

a0 = (o) = [ o= | v | N
T (t=n,t+17) T\ (t-1,t+1)
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as m — oo since ¢, is bounded by 1 and converges to 0 uniformly away from ¢. Since

(Do = {E)32) = (Pt} ~ Lw({t}) a5,

Z(e—ins, #>eint _ m

T 2m+1
mt —int __
2m+1ZA( 2m+127” (1)
we have
int _
(@ =u({thor) = 5 ZA( ()
and the result follows from the fact that (¢,,, u — p({t}) — 0 as m — co. O

Corollary 1.34 (Wiener). Let y € M(T) then

) lutieh = im 2m+1 ZIA(n

teT

In particular, y is continuous if and only if

Proof. Apply theorem 1.33 to u=u* at t = 0 we obtain the result. O

2 Fourier transform

» We denote L' (R) means L' (IR, n) where m is the Lebesgue measure on R, $(IR) the space of Schwartz
functions on R and Cy(IR) the set of functions f that vanishes at infinity, i.e., {x : [f(x)| > €} is
compact for all € > 0.

* The Fourier transform follows the following convention

J- f(x)e > dx  for EeR

where R is the space of frequencies, another copy of R. The inversion formula is (under some mild
conditions)

fx)=F"f]= ff &)ee¥dg for  xeR
* The Fejer’s kernel is {K : A > 0} where X, (x) = AK(Ax) with

_ 1 (sinx/2 2_ i&x 2miéx
)= e (M) = L e = [ - 2menene ac

We have [|X,[[p1g) = 1 for all A > 0, it is a summability kernel with X, — 99 as A — co. Its
Fourier transform is

X&) = (1 - %)X[)\,/\](é)-

The Fejer’s kernel does not belong to §(IR), but is is infinitely differentiable. As tempered distribu-
tions, A1 K, — - — in 8'(R) as A — 0, thus A1, — 8y in 8'(R) as A —> 0. It is indeed true that
ATIKy, — 1 unlformly on compact sets of IR.
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s For f € L'(R) and m € Z we have
|f(t=2mn)| dt = (s) ds = J |f(t=2mn)| dt =||f|I
sz Z’ "ll"+27'm T;’f f F®

by monotone convergence theorem. Thus the series } > f(t—27n) is finite a.e. in T, which implies
it converges absolutely for a.e. t € T, hence the function

t):=2m éf(t—Znn) (||(P||L1(1r) = %J;J(P(tﬂdt)

is well-defined as a (27-periodic) function in L!(T) with ol <Ifllz1(wr)- For n € Z then

70 = 5 [t ds

zjft_zn] Jemint it = ZJ

j=—co T+2mj

e de= [ flole ds = Fio,

If we denote f(x) = Af(Ax), and @, (t) =21 Y 7 f2(t — 27tn) then similarly @, (n f/\ f(%)

2.1 Fourier-Stieltjes transforms

We denote by M(IRR) the space of all finite Borel measures on R, it is a normed space with the total mass
norm on M(R) is defined by ||ullap(r) = lel dlp| = |ul(R). Recall that (M(IR),lI . ||M(1R)) is identified with
the dual space of Cy(IR) by means of the coupling (|| - [[ss(r) is identified with the dual norm)

S mm ffd/», feCoR),  peM(R).

It is clear that the above formula defines y as a linear functional on a larger space BC(IR). The weak”

topology on M(IR) is called the "vague topology”, which is defined by y,, = pin M(R) iff (f, u,) — (f, )
as n — oo for all f € Cy(IR) (we suppress the subscript M(RR) in the product).

1. The mapping f > f dm identifies L' (IR, m) with a closed subspace of (M(IR),ll . ”M(IR)); since if
f, — f in LY(R, m) then for u, = f, dm and p = f dm we have

Ut — ot = f 1 dlp i = j o fldm=1f,— flis —0 as  1n—sco.
R R

2. The convolution of a measure y € M(IR) and a function ¢ € Cy(IR,C) is a function defined by

(el = [ ple=y) duty)
Since |p|(R) < oo, it is clear that ||+ @||, <||pllpw) - ll@ll, thus the formula above is well-defined.
Lemma 2.1. p*@ € Cy(R) for all y € M(R) and ¢ € Cy(IR).

Proof. The uniform continuity of ¢ € Cy(R) C C.(IR) implies that y=*¢ is continuous. For € > 0, let’s
define the compact set A, to be

&
A, :{ZGIRZ |§0(Z)|Z W}
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Since A, is compact, there exists n € N such that A, C [-n,n]. Also it is clear that ¢ € L'(|y]), hence
there exists m € IN such that

&
P2 din(z)] < 5.
R\[-m,m]

For |x| > m + n then (x — A,) N[-m,m] = 0, thus

Jtot=sapon= [ lo-plianmis [ lptepldp < 5+ gll®) -

A \(x—A;)

Hence {x € R: |u* @(x)| > €} C [-(m + n), m + n] which is compact since it is closed already. O

. The convolution of two measures y, v € M(IR) is another measure defined by

(jxv)(E) = f WE -) dv(y)

fjx” X) dp(x) dv(y fjx,sxw ) du(x) dv().

for every Borel set E C R. It is clear that y+v € M(RR) and || * vlm(r) < lpllaw) - VIl r).- We can
generalize the above formula to the following.

Lemma 2.2. For any bounded Borel measurable function h: R — R, we have

Lh( (p*v)( jJ. (v +2)du(y) dv(z).

Proof. First of all the claim is true for all characteristic function xg where E is a Borel set, thus by
linearity it is true for all (Borel) simple functions. Write h = h* — h~ where h*,h™ are non-negative
bounded Borel measurable functions, the finite properties of y, v an p* v implies that they h* is
(u*v)-integrable, and (v, z) = h(y +z) is y®v-integrable as well (under the product measure). The
general case follows by these observations and the monotone convergence theorem. O

. We define the Fourier-Stieltjes transform of a measure y € M(IR) to be a function by

(€) = &) = (&0, >M(R):Lei5xdy(x) forall &eR

If u is absolutely continuous with respect to the Lebesgue measure on R, say p = f(x) dx for some

f € LY(R,m), then clearly #(&) = ﬂ(f). Many properties of L'-Fourier transforms are shared by
Fourier-Stieltjes transforms:

(a) If p € M(RR) then clearly [p(&)l < [|pllv(r)
(b) F: M(R) — BUC(R). Indeed, for &, n € R, we have

e +n)-mé)| = Ume“"(e“f" d|p(x)

f e 1] dlp(x)

The integral on the right hand side is independent of &, and [e7"7* — 1| < 2 € L'(R, |u(x)|), thus
dominated convergence theorem can be applied to deduce that:

lim [sup [fi(& +7) - @&)| | < lim f ™% — 1) d|p(x)| :f (lim |e—inx_1|) dlu(x)| =
n—0 EeR n1—0 JR R \n—0
(c) For p,v € M(R) then i+ v(&) = u(&)V(E) for any & € R. It follows by lemma 2.2 by

e = fme—ié" (s v)(x)

- [ g ava=( [ e ) [ e avea) =mermien
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(d) We have an analog of Parseval’s formula.

Theorem 2.3 (Parseval’s formula). Let u € M(R)and f € L'(R,m)NC(R) such that fe L! (I/R\, m),
then
[ rerau = 52 [ Fem-)a (16)

Proof. Note that L!(R) N C(R) € Cy(RR), thus the integral on the left of (16) makes sense.
Indeed, for each ¢ > 0 the set {x € IR: |f(x)| > ¢} has measure at most ¢~!||f]|;1, thus it must be
a bounded set and hence it is compact in R since it is closed. We can use the Fourier inversion

formula to deduce that )
_ T ix
- 5 | Fereer ag

and hence since ?6 L! (I/R\), Fubini’s theorem reads

[roane = | (ﬁf(a)e’f’f d::) ()
=—jf (f e ))da— ff l-c) d

Another way to rewrite this result is

[ - 5 [ Ao a

(e) (Uniqueness theorem)If 71(&) =0 for all £ € R, then u=0.

A departure from the theory of L!-Fourier transforms is the falling of the Riemann-Lebesgue
lemma: the Fourier-Stieltjes transform of a measure y need not vanish at infinity.

. The assumption f € L'(R) justifies the change of order of integration by Fubini’s theorem; however
it is not really needed. In particular, we have the following theorems.

Theorem 2.4. If f € L'(R) N C(R) then:

[ s apto A(l—@)f( £Vfil-E) de

/\—mo 27I A

Proof. Recall the Fejer’s kernel K (x) = AK(Ax) satisfies ?A(E) = ( - %)X[_,\,,\](E). Now we have
=K+ f e L{(R)NC(R) and f, = K, -fe LY(R), thus Parseval’s formula 2.3 implies

[awann= 5 [ Femad — [ onmipn - [ Refem-ede

Since K, * f —> f everywhere since f € C(R) as A —> co (summability kernel), and since L' (R) N
C(R) C Co(R), we have [|Ky * fllzor) < [IKalliw)llfllze = lIfllze € L'(R, p), thus the dominated
convergence theorem applies to (IR, i) gives us the desired formula. O

As a corollary we have:

Corollary 2.5. If f € L'(IR) N C(IR) such that f(&)@(~&) € LY(R) then (16) holds true.

Proof. Using the same technique X = f, then if ]?(é)ﬁ(—é) € L1(R) in the limit we obtain (16) by
dominated convergence theorem. O
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6. The problem of characterizing Fourier-Stieltjes transforms among BUC(ﬁ?\) is very hard. One im-
mediate result we can have is if f € FL!, say f =g, then with u = g(x) dx we have f(&) = (&) = @(&).

Theorem 2.6. If y € M(R) and 'V, is de la Vallée Poussin’s kernel Vy = 2K,y — K, then u+V, € L'(R)
and p*V, (&) = u(&) for [E] < A

Proof. First of all observe that [|V,|l;1 < 2||Kpallp + 1Kt = 3. We have (x,9) — V) (x —p) from
(IR, m) x (R, #) — R is measurable and satisfies

L|VA<x—y)|dxs||vA||L1 forallye R, and Lkmu—wldwmws3||;4||M(1R>

Thus Tonelli’s theorem concludes that (x,y) +— V,(x —y) € Ll( (R, m) x (IR, u) ), hence by Fubini’s
theorem we have y*V), € L'(IR) since

LI#*W)I dx = LLW*"“”' du(y) dx = ijmx—y)l dx du(y) < 3l

The rest is straight-forward from the Fourier transform of V,, which is

1 1< A,
Vie)=q2-8 acgl<2r, = peVa(E) = aEmE) = (&)
0 2A <€)
if |£] < A. The proof is complete. O

A further characterization is given below.

Theorem 2.7. Let ¢ € C(R), define

A .
Dy (x) = J‘A(l _ %)(p(g)e“ﬁx de.

21

Then @ is a Fourier-Stieltjes transform iff ®, € L' (R) for all A > 0 and 1Pl (R) is bounded as A —> oo.

Proof. If ¢ = i for some p € M(R), then ¢ = ji € BUC(R), thus K, (-Ji(-) € L'(R) and K, * u € L'(R)
by an analog to the argument in the proof of theorem 2.6. The Fourier inversion formula reads

/\ .
Erme) = 5 [ Ratemeras= 5 [ (1—'51')<p<5>e%5:cm<x>.

Therefore @) = X + p for all A >0, and clearly [|D, |1 < [|FC I lpllv(w) = pllv(w)

For the converse, for each A > 0 we can define the corresponding measure y, = ®,(x) dx € M(RR).
Since |uallmr) < C for all A > 0, Banach-Alaoglu’s theorem implies that there exists a sequence

A, —> oo and y € M(R) such that s, — p in M(R). Recall that i) (&) = (&), and furthermore
X1 (&)(&) € LY(R) reads

F[Ka(p()](—x) = F7 [Ka () ()] (x) = Da(x) € L'(R)
which, by the Fourier inversion formula gives us 6,\(5) = J?A(é)(p(é) for & € R. We also obtain
K@), = [[®a]], <lPallr <€ = el =C

by sending A — co. In order to show ¢ = 7, it suffices to show that (since both ¢ and J are
continuous)

ﬁf(é)ﬂé)d& - fj(cs)@(a) de  forall [eCO(®. 17)
R R
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For such test functions ]"\we have f € 8§(R) € L'(R) N Cy(RR). The key tool is Parseval’s identity (16),
indeed we have

1 —~ =~ 1 —_
[ rrame = o [ Fom-ae = 32 [ e as = o | Floma-sip de.

Let A — oo along the sequence A, and using p, N u on the left and dominated convergence
theorem on the right (thanks to ¢ is uniformly bounded) we obtain

| rwane = | Fie — 5 [ Femee = o [ Few-e ae

by using the Parseval’s identity again for the left hand side. Thus (17) is justified and the proof is
complete. O

Note that the application of Parseva’s formula above is typical and is the standard way to utilize the
weak® limit in M(IR). Nothing like that was needed in the case of M(T) since weak” convergence in
M(IR) implies point-wise convergence of the Fourier-Stieltjes coefficients (the exponentials belong
to C(T) of which M(T) is the dual). The exponentials on IR do not belong to Cy(IR) and it is false
that weak” convergence in M (IR) implies pointwise convergence of the Fourier-Stieltjes transforms.
However the argument above gives:

Lemma 2.8. Let p, = uin M(IR) such that u, (&) — @(&) point-wise for some ¢ € C(R ) then 1= .

Proof. For a test function fe Cf"(]’R\), recall that f € $(R) € L!'(IR) N Cy(IR) and thus the Parseval’s
formula reads

J st = 5 [ Fermi- — | et =3 [ T

by sending n — co. The result follows from Parseval’s formula again. O

A related result is the following:

Lemma 2.9. If X is a LCH space and {u,} C M(X), p,, — p vaguely, and ||u,|| — ||pl|, then we have
IXf dp, — fo du for every f € BC(X). Moreover, the hypothesis ||p,|| — ||pl| cannot be omitted.

. A similar application of Parseval’s formula gives the following useful criterion:

Theorem 2.10. A function ¢ defined and continuous on R, is a Fourier-Stieltjes transform if and only
if there exists a constant C such that

& famon

for every f € L'(R) such that f has compact support.

< Csup|f(x (18)
xeR

Proof. First of all, let T(R) = {f € L'(R) : fe Cc(ﬁi)} then T(R) c L'(R) N Cy(R) by Riemann-
Lebesgue lemma. By Parseval’s formula

[rmapn=o [ Feom-ode = | [ Fewr-oa

Conversely, assuming (18) holds true for all f € T(IR). Let’s define the linear functional

<llplisuplf (x
x€R

ATR) =€ maps frogs [ flelpcods ik AQISCIfL. 09

We claim that T(IR) is dense in Cy(RR). Indeed, given any f € Cy(IR), we can find f, € C°°(IR) with
lIf,—fl, — 0. For each f, € C2°(R), in turn we have fn € 8(R) c L!(R), there exists g, € C>(R) such
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that ||g, — fn”Ll < 27", which implies that ||g,, — f,Il, < 27", thus we have shown that g, € T(IR) and

9 — f unlformly. Therefore the linear functional A defined in (19) can be extended uniquely
to A : Cy(R) — C with the same bound. By Rieze’s representation theorem, there exists a unique
measure y € M(IR) such that ||y|| = ||[A]| < C and

dey %Jf £)de for feT(R)

By Parseval’s formula we deduce that % = ¢ and the proof is complete. O

One observation we didn’t use in the proof is that, if we assume (18) holds for f € T(IR), we can
deduce first that ¢ € L°°( ). Indeed it is obvious that F[T(R)] is dense in Cy(RR), since CX(IR) is
dense in Cy(R) and F~'[CX(R ] C 8(R) € L}(R). Thus the linear map

®:C.(R)— C maps f|—>jf &)dE  with ICD(f)ISCIIfIIuS||]?||L1(®

extends uniquely to a bounded linear functional on Ll( ). The Rieze’s representatlon (LY=L=
gives us the unique u € L®(RR) such that ¢(&) = u(-&) and hence ¢ € L*(R).

The family of function f such that (18) holds true can be taken in many ways. We need a collection
of functions {f : f € J} such that they are dense in Cy(RR) and { f f € g} is dense in Cy(R), for
example {f : f e CX(R)} or {f : f € CZX(R)}.

. With measures on IR we can associate measures on T simply by integrating 27-periodic functions.
Formally, if E is a Borel set on T, which is identified with (-7, 7], we denote by E,, = E + 2tn and
E = U,z En- If p € M(R) we define

pr(E) = p(E).

It is clear that pp is a measure on T and that identifying continuous functions on T with 2mr-

periodic functions on IR gives us
[ reax={ suar
R T

The mapping y — ur is an operator of norm 1 from M(RR) onto M(T). It also follows that for
n € Z then u(n) = p(n), thus the restriction of a Fourier-Stieltjes transform to Z gives a sequence
of Fourier-Stieltjes coefficients.

Theorem 2.11. A function ¢ defined and continuous on R is a Fourier-Stieltjes transform if and only
if there exists C > 0 such that for all A > 0, {@(An)},cz are the Fourier-Stieltjes coefficients of a measure

pr € M(T) with ||prllpmr) < C.

Proof. 1f ¢ =i for some p € M(IR) then @(n) = u(n) = pr(n) for all n € Z, and ||prllp(r) < lplMm(w)
Let’s denote by y, the measure in M(IR) satisfying

J-f x) dpy(x J-f (Ax) dp(x) for all f e Co(R)

then we have ||u|lp(r) = llpllmw) for all A >0, and clearly 13 (&) = u(AE) = @(AE) for & € R. Thus
after transferring to a measure in M(T) we obtain

F[ ()] (n) = Fa(n) = @(An)
thus {¢(An)},ez are the Fourier-Stieltjes coefficients (p))r € M(T) with () Tllper) < lpllvw)

Conversely, if there exists C > 0 such that for all A > 0 we have {¢(An)},cz are the Fourier-Stieltjes
coefficients py € M(T) with ||p,[lpr(r) < C, then we want to estimate the integral

2 [ T@wtards o ferimFecs®)
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in order to use theorem 2.10. Let’s assume supp J/’\C [-R,R] and A = R/m with m € IN, we can divide
[-R, R] into 2m siub-interval of length A, and we can approximate the integral by Riemann’s sum,
that is given € > 0, there exists m € IN large so that

2nJ- F(&)p(—&) de - 2— Z (nA)p(-nA)| < (20)
Recall that if f € L!(RR) then for
(t) = ;f(t—/z\rcn) we have e LY(T) with ,(n)= %]/[\(i’l/\).

Thus if ¢ =, for some p) € M(T) with [[p;[[p¢r) < C then

%i: w=i@wmw>

The Parseval’s formula for ) € M(T) reads

|n| .

k
1 _
)M = kh;an(l Tl )#’A n)p (= ZEDA n)p(-n) = oy Z f(nA)p(-nA)
r

Thus we obtain

an/\ -nl)

for all A > 0. Since f € C®(R), we have f = F1( f) € 8(IR) which decays very fast at |x| — oo, thus
if we choose A small enough we obtain

< Mlpallmerysup [Pa(£)] < Csup i (t)] (21)
teT teT

sup [ ()| < suplf(x)[+e. (22)
teT xeR

This fact together with (20) and (21) implies

2w | Flewt-s) ds

Since € > 0 is chosen arbitrary, we obtain the result from theorem 2.10. O

< Csup|f(x)|+ (C+ 1)e.
x€R

The estimate (22) can be proved precisely as following. Since fe 8(R) we have f € 8(RR) as well,
thus

C
sup (27 + |x])?|f (x)| < C = If(x)| < ———— forall xelR
P / TS Gy
For t € T ~[0,27) and n # 0 we have
t—27'cn CA? C\? C\?
f = 7S 7 S 422
(27'c+|t—2r(n|) (27'c+27'c|n|—t)
Hence
—2nn CA? CA?
watol < |F(5)+ X[ ()| < suplf o+ = suplf(x)|+ -
ZO’ xeR 4m? ;’” xeR 24

and thus the result follows when we choose A small enough.

. Parseval’s formula also offers an obvious criterion for determining when a function ¢ is the Fourier-
Stieltjes transform of a positive measure. The analog to theorem 2.10 is
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Theorem 2.12. A function ¢ € BC(R) is the Fourier-Stieltjes transform of a positive measure on R if
and only if

ff &)dE>0 (23)
forevery f e P(R)={f >0, f € C(R

Proof. If ¢ = for some positive measure p on IR, then Parseval’s formula implies (23) obviously.
Conversely if (23) holds true for all f € P(RR), then it is also true for all non-negative functions

{f e L'(R), f € L'(R)}.
* Let C € CZ(R) be the standard mollifier,i.e., 0 < <1,suppC C(-1,1), C = zl n a neighbor-
hood of the origin, and LR x)dx=1.Foreache>0let C.(x)=¢ 1C( ) en

cw=c(Y) = Go=ce = ﬁﬁffg(é)déﬂfﬁae{)dé=2nC(0)=

by the Fourier inversion formula. In other words, {ta}&_>oo forms a summability sequence,
hence for every f € Cc(ﬁ) C Ll(ﬁ) we have

|7+t~

as & —> 0. (24)

* For a non-negative f € L!(IR) N C*®(IR) with ]’(\E Cc(ﬁ?\) we have f(x)C (f) f(eC,) e CX(R) and
is non-negative, thus (23) reads

J;(J;\*‘SZ\E)(5>(P(_E)6{€ >0 forall &>0.
R

From that and (24) as € —> oo, (23) is true for non-negative f € L'(R)NC*®(RR) with ]/‘\e C.(R)

e Finally if f € L'(R) with fe L'(R), then let 4 € C°(R) be the standard symmetric mollifier,
ie, 0<% <1,suppn c(-1,1), 7 =1 in a neighborhood of the origin, and IIRn &) dE =2m.

For each € > 0 let #.(&) = 5‘117 (6‘15), then

fo= T Nen) eCORNLYR)  and  f(&) = Flem (%) e CuR)

The result from the previous step implies

Jf £)dE=0 for all e>0.
As ¢ — o0, by the dominated convergence theorem we obtain (23) is true for all non-negative
f € LY(R) with f € LI(RR).

Going back to our problem, recalling that with the Fejer’s kernel {X}150 we have {171% } 150
satisfies ™14, —> ¢ in 8'(R) and thus (if @ is a Schwartz function)

lim | A7'%K,(8)p(-&) dE = 9(0) (25)
A—0 R

and then using this fact to proof an identity that theorem 2.10 requires. The identity (25) is indeed
true even if we only have ¢ € BC(IR) (actually we only need ¢ is continuous), since

A
Y

= %f:(l =)@+ p-0) d

1
= J; (L=n)(@(An) + p(=An)) dy — 2<p(0)(fO

1
(1—11)d17)=fp(0)
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10.

by the dominated convergence theorem. Now we show that

& famon

then the proof will be complete by theorem 2.10. Let’s consider a real-valued function f € CZ(R,R),
since X(Ax) — % as A — 0 uniformly on compact sets, for given ¢ > 0 there exists Ay > 0 small
enough such that for all A < A then

<2¢(0 (sup|f( |) for feCX(R,C) (26)

xeR

K(Ax) - 1

1 1
< —_— < < —
7| <€ = e <K(Ax) < R for all x € supp(f)

Sup = 2

xesupp f

which implies that

= f(x)§271(9€(/\x)+e)sup|f| forall xelR

'~

L9 < (K(Ax)+e)suplf| if f(x)>0
L9 < (%(Ax)—¢)suplf| if f(x)<0

In other words we have 2rtsup |f|( 19 (x) + ) — f(x) is a non-negative function which belongs to

C*(R)N L' (R) with its Fourier transform belongs to Ll( ), thus (23) (applying to a bigger class of
functions) reads

[ 2msuplfi(11%ate) + coman)pi-6) de > [ Flerpl-e)d
R R

ie.,
o [ Frwt-6 e < (2mepio+ [ 1 Ruierpt-e) defsuply
Let A — 0 and using (25) we obtain
3 | (=) de < p(O) 2me+ Dsuply (o).

Let ¢ — 0 and replace f by —f we obtain (26), after applying the same argument to the real part
and the imaginary part of a complex-valued function f. O

An analog of theorem 2.11 but with positive measure in M(T) is:

Theorem 2.13. A function ¢ € C(R) is the Fourier-Stieltjes transform of a positive measure if and only
for all A >0, {p(An)},cz are the Fourier-Stieltjest coefficients of a positive measure on T.

Proof. If ¢ = for some positive measure y € M(R) then ¢(n) = u(n) = pip(n) for all n € Z, and
llurllaer) < llpllvw)- Let’s denote by p) the measure in M(IR) satisfying

jf x) dpy(x) jf (Ax) dp(x) for all f € Co(R)

then it is clear that y, is positive and ||p,[lv(wr) = llpllm(w) for all A > 0, and 73 (&) = HAE) = p(AE)
for & € R. Thus after transferring to a measure in M(T) we obtain

F[ ()] (n) = Fa(n) = @(An)
thus {¢(An)},cz are the Fourier-Stieltjes coefficients of a positive measure (p))r € M(T) with
() Tlaem) < lpllvr)

Conversely, if for all A > 0 we have {@(An)}, 7 are the Fourier-Stieltjes coefficients of a positive
measure p) € M(T), i.e., p(An) = py(n) with ) > 0 in M(T), then clearly ¢(0) = 7,(0) = [luallp()
for all A > 0. By theorem 2.11 there exists a measure y € M(R) such that ¢ = . We have left to
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11.

12.

show that p > 0. Let’s follow the procedure above for the “only if” part. Let v, € M(RR) be the
measure satisfying

Jf ) dvy(x ff (Ax) dp(x) for all f € Co(R)

then it is clear that ||v,|[yr) = ll#llmw) for all A >0, and V(&) = W(AE) = p(AE) for & € R. Thus
after transferring to a measure in M(T) we obtain

Flwva)rl(n) =Va(n) = @(An) =y (n)

for all n € Z. The uniqueness of Fourier-Stieltjes series in M(T) implies that p) = (v))r = 0, and
thus v, > 0. Hence

f f(x)dvy(x j f(Ax)dpu(x) =0 for all feCy(R), f >0.
From that we obtain y > 0 and the proof is complete. O

A complex-valued function ¢ defined on R is said to be ”positive definite” if, for every choice of
&1, &m € R and complex numbers z,...,z,, we have

Y - &zF 20

1<j,k<m

Immediate consequences of this condition are ¢(—&) = ¢(&) and |@&)| < @(0) for all & € R if ¢ is
positive definite.

Theorem 2.14 (Bochner). A function ¢ defined on R is a Fourier-Stieltjes transform of a positive mea-
sure if and only if it is positive definite and continuous.

Proof. If ¢ = i for some p > 0 in M(RR), then clearly ¢ is continuous, and for &;,...,&,, € R and
complex numbers z,...,z,, we have

Z (&) — Ek)zjz = Z (J;ze_iéjxeig"x d}J(X))zjﬁ = J;R

1<j,k<m 1<j,k<m

du(x) >0

2
E —i&ix
Z]€ ]

1<j<m

Conversely, if @ is positive definite then for any A > 0 we have {¢@(An)},cz is a positive definite
sequence. By Herglotz’s theorem, there exists a positive measure y, € M(T) such that @(An) =
#,(n) for all n € Z, which implies that ¢ =7 for some positive measure y € M(R). O
Let u € M(R), let’s define the measure u* € M(RR) by

u*(E) = u(-E) for every Borel set ECR

or equivalently
f f(x dy f f(- d/,t for every f € Cy(R) (or BC(RR)).

It is clear that p ( ) = f(&) for all x € R, thus W(é) = [f(&)|? for all x € R. A measure y € M(R)
is continuous if p({x}) = 0 for every t € R, equivalently, u is continuous if

X+71
lim J |dpl=0 for every x € R.
1n—0 x—1

Theorem 2.15. Every measure y € M(IR) can be decomposed to a sum p = p.+ py where p. is continuous
and pg is discrete.
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13.

If u € M(IR) is a continuous measure then for any v € M(IR), from the formula

(u*v)( ijz E—5s)dv(s)

we deduce that p* v is continuous. Since 6, * 8, = d44p, if p=Y " b andv=Y". b; 6t then

j=1%j% j=1%]

n

pxv = Z ajbk55j+tk'
jk=1

Let y = pic + pg and p* = pf + pi% be the decompositions to continuous and discrete parts, we have

et = (e i+ e i+ pa e i)+ (pax ).

(p*p*)c

Assume that pig = Y7,

proved the following:

ajo;j, then ,ud = Z ajé_sj and thus p* p*({0}) = Z;’Zl Iajlz. Thus we have

Lemma 2.16. Let y € M(RR), then

In particular, p is continuous if and only if (u+ u*)({0}) = 0.
An analog of Wiener’s theorem but with measures in M(IR) is the following:

Theorem 2.17. Let u € M(IR), then the discrete part of u can be recovered by

: 1 A i&x
el = lim o [ e e
As a consequence, we have

Y It = tim —j e de.

x€R

In particular, a necessary and sufficient condition for the continuity of py is

Jlim —J &) dg =0.
Proof. For a fixed x € R, let’s consider

A
Pa(y) = 21_/\J- M ds =  suplei(w) <1 and lim @,(y)=0 uniformly away from x.
-A ye]R A—0

Let v = p— u({x})9, then v € M(IR) with v({x}) = 0, which implies |[v|({x}) = 0. Regard v as a linear
functional acting on BC(RR), by the dominated convergence theorem we have

(0= [ A DH—0 s 1o @7)
By Fubini’s theorem for (&,y) —> eié(x—y))([,/\’/\](é) € Ll((IR, ™) x (IR,@)) we obtain

(@a(),v) ={pal

) 1y = pl{x])
-
Mﬁ(fm S duly )) 5 ds - p(fx) 2AJ A—E)e' d - u({x)).
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Thus we have

0= oy [ e eyt = [ e ae - pit)

and together with (27) we obtain

(i) = hmmﬁf &) de.

Apply this formula for p being replaced by u = u* we obtain

(<) 0] = im —J TP g =Y ullx)

xeR

and thus the proof is complete. O

As a consequence, since the Fejer’s kernel X, € L!(IR) and &,\ € Ll(ﬁ), we can use the Parseval’s
formula to deduce that

(5o 1) (x) = f % (x ) duly)

= 57 | Al fem-z) a

27'(

_L /\ |é|) —iéx 1 /\( |é|) iEx
—an( & )e i€ de = L E)eE* de.

LN (O 3
oy du = o [ (15 Jmeere ae.

By the same argument, since A"'%,(x —y) — 0 uniformly on compact set away from x, and
ALK, (0) = %, send A — oo we obtain

Thus

A A
st = gim L [ (- Emepeeae = = tim 5 [ (1= Bl meeeae

A—s00 2TCA A—o0 A
Together with the above theorem, we obtain:

Theorem 2.18. Let u € M(IR), then

oo A

A A
it = tim 5 [ (1B ae = im 5 [ iemert e

2.2 Fourier transforms of distributions

We will recall general fact about Schwartz functions in high dimensions even though later on we will
only focus on the real line. We denote by D((}) the space of smooth functions C°(Q)) with compact
support in Q. A distribution in D’(Q) is a linear functional on D(Q)), equipped with the weak* topology.

1. (Schwartz space) For any non-negative integer N, any multi-index & and f : R” — C we define:

NfllN,e) = suﬂg(l +[x)N [0% f (x)| and 8(R") = {f € C*(R",C) : [Ifl(N,qa) < oo for all N,a}.
xelR”

The is a metrizable topology on §(IR") which makes §(IR") a Fréchet space over C.

Lemma 2.19. If f € 8§(R") then 9% f € LP(R") for all a and all p € [1,00]. Indeed 3% f € Co(R") for all
multi-index a, consequently 9% f is uniformly continuous.
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Proof. For any multi-index «, p € (1,00) and N € IN then

” Il . d
sl e [ g pp dx <R, [ <

(1 +[x)N (1 + [x)NP

if we choose N > l—’j. The case p = oo is trivial since (1 +|x|) > 1. For € > 0, we have

{xeR": |0 f(x)| > ¢} C {x eR": ”{ll(};) > g} = {x eR": x| < e Mflla - 1}.
The latter set is compact in IR”, which implies the result. O

Proposition 2.20. §is a Fréchet space with the topology defined by the norms || - ||(n,a)-

Proof. The topology on § is generated by a countable sequence of seminorms, thus it is locally
convex topological space, Hausdorff and metrizable with an translation-invariant metric. The
only nontrivial point we need to check is completeness. If {f;} is a Cauchy sequence in § then
Il fx — kj“(N,a) —> 0 as j,k — oo for all N, a. In particular, for each fixed a, take N = 0 then

sup|0% ;(x) = 0 fu(x)| = 1f; = fello.) — 0

as j,k — oo, thus for each x € R" we have {0 fi(x)};2, is a Cauchy sequence in C, thus it defines
Qa(x) =1limy_, o, 0¥ fy(x). Toeach e >0 corresponds N (¢e) € N such that

|8”‘fk(x)—9“fj(x)| <e for all k,j>N(e),x e R".
Let j — oo, we deduce that
|9% fr(x) (x) <e for all k> N(e),xeR".

In other words 0“ fy — g, uniformly on R". Since 9“f; € §(R") C Cy(IR") and Cy(IR") is closed
in BC(R") with the uniform metric, it is obvious that g € Co(IR"). Denoting by e; the vector
(0,...,1,...,0) with the 1 in the jth position, we have

t t
fk(x+tej)—fk(x):J; Qeffk(x+se]-)ds = go(x+te]-)—g0(x):J-0 gej(x+sej)ds

by letting k — co. The fundamental theorem of calculus implies that g, = 0% gy, and an induction
on |a| then yields g, = d% gy for all a, thus g € §(IR") follows easily. Finally recall that

sup (1+[x)N |97 fi(x) - 97 go(x)| < IIf; - fk||Na+sup(1+|x| 0% fi(xx) — 9 go (x)]

xeR"

for all k € IN. For each ¢ > 0, choose j, k large such that ||f; — fxll(v,a) < %, then let k — co we obtain
Il fx = goll(v,a) — O- O

Another useful characterization of § is the following.

Proposition 2.21. If f € C®(R"), then f € 8 iff xP9° f is bounded for all multi-indices a, p iff 9% (xP f)
is bounded for all multi-indices a, p.

Proof. Obviously |xf| < (1 +|x|)N for |f| < N. On the other hand, 27:1 IijN is strictly positive on
the unit sphere [x| = 1, so it has a positive minimum 6 there (note that 6 < 1). If follows that
;’:1 |xj|N > 5|x|N for all x since both sides are homogeneous of degree N, and hence

n
1 +x)N < 2N(1 +|x|N) <2N ll +671 Z|x]-|N] < 2Nt Z |xP|.

j=1 IBI<N

This establishes the first equivalence. The second one follows from the fact that each 9*(xf f) is a
linear combination of terms of the from x? @ f and vice versa by the product rule. O
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2. A very useful fact we need later is that CZ°(Q)) is dense in LP(Q)) for any open set () C IR” and any
1 < p < 0. Since CZX(R") c §(R") ¢ LP(IR") for all 1 < p < oo, we deduce that §(IR") is dense in
LP(R") for 1 < p < co. The result fails for L, however recall that L* is the dual space of L! (with
respect to norms on these spaces), if we denote o(L®, L) to be the weak* topology on L, then we
have:

Theorem 2.22. The Schwartz space 8(R") is dense in L™ (IR") with respect to the weak* topology o (L, L!).
That is, for any f € L°(IR"), there exists a sequence of f, € 8(IR") such that

lim fu(x) p(x) dx = fx)p(x) dx for every ¢ e LY(R™).

n—>00 R R"

Proof. Take n € C*®°(R") with 0 <# <1 and ||5||;1 = 1, define #,(x) = nr(nx) for all n = 1,2,.... For
eachnlet &, € CP(IR") such that 0 <& <1,supp &, CB(0,n+1)and £ =1 on B(0,n). Let’s

fo=(f*n)én  satisfies  ||fyllee <N #7ullees <N flleollpallee = 111l

It is easy to see that since f € L*(IR"), f * 11, € C*(IR) with D¥(f *#,) = f * D%, is bounded for all
multi-index «, hence f,, € §(IR"). Since f *1, — f a.e as n —> oo, we have f, — f a.easn — o
as well. Now for any ¢ € L'(R") we have f,¢ — f¢ a.e and |f,¢| < |If]l1¢ € L}(R"), thus the
dominated convergence theorem implies

lim IRnJ‘n(X)#)(X)dx: f(x)p(x) dx

n—o0 IRYI

and the proof is complete. O

3. A tempered distribution on R” is a continuous linear functional on §(IR"), denoted by 8’'(R") =
L(8(IR"), C). It comes equipped with the weak® topology, that is, the topology of point-wise conver-
gence in 8. By using Hoélder inequality with § ¢ LP(IR") for all 1 < p < o0, every locally L? function
can be identified with a tempered distribution in 8’(R"), by the natural pairing

fell (R")r— A with <¢,Af>:JIan>(x)de.

Thus LP(R") c 8'(R") for all 1 < p < oo (after identifying as distribution). The same is true for the
space of finite Borel measure M(IR") as well, by the pairing:

peM(R")— A, with (P, Ay) = JIR” b (x)d p(x).

4. For a tempered distribution y € 8’(IR"), we define its Fourier transform e §8'(R") by
@W=(pp) forall peSR)
We denote by FLP = F[LP(R")].

Theorem 2.23. For f € FLP, let’s define ||fll1r = ||fllrp, then it defines (FLP,||-||51) as a Banach space
forall1 <p < oo.

Proof. Since each distribution f acting as Aron 8(R") by <(’I)\,]?> =(¢.f)= IIR,, ¢ (x)f (x) dx, it is clear
that ||ﬂ|ng = 0iff f = 0a.e, which implies <(/{)\,]?> forall ¢ € S(R"), i.e., ]/‘\: 0. Thus (FLP,||-||grr) is a

normed space and its completeness follows from the completeness of LP(IR") forall 1 <p < co. [

Recall that for 1 < p < oo, LP" is the dual space of LP where l% + l% =1, notably (L1 )* = L* but not
the inverse. The same things hold true for FLP as well.

Theorem 2.24. For 1 < p < oo, (S"LP*,H . ||?Lp*) is the dual space of (FLP,|| - ||5rp) where 11_7+ [% =1.
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Proof. Let A : (FLP,||-|lg1r) — C be a linear bounded functional, we have the following diagram:

F
(LP N Nlp) —— (TLP - llgrr)

lA — AoF e (LP).

Using the duality of LP when 1 < p < o, there exists a unique f, € LP" with 1 < p* < co such that

A(@) = @(x)fa(x) dx for every @ € LP(R")
IR"
and furthermore [|fall;p* = ||A o F|(rr):. By an application of Hahn-Banach theorem we have

IAlliFey = sup |A@]= sup [(AoF)p|=1IAoFlwry =IIfalle-
1PNl p=1 llellp=1

Thus the mapping @ : (FLP)* — FLP" maps A —> f,\\ is a linear isometry. We only need to show
that @ is surjective, indeed for any f € L, we can define A : FLP — C by

Alp) = L@(x)f(X) dx
It is clear that A is linear and bounded since

|A<a>|sfmkp(x)mldxs||f||Lp*||<p||Lp:||ﬂ|w*||<'p1|w = Aoy < Ifllspe-

By the duality of (LP)* = LP" (the uniqueness part) we obtain ®(A) = ]"\ Thus @ is a linear surjective
isometry, thus it is an isomorphism between two spaces and the proof is complete. O

From this result, by pairing in FLP" and FLP we means (for 1 < p < co)

<a’f>(ﬂp,:ﬂp*) = Wf(x)m dx.

. (Support of distributions) Suppose A € D’(Q)), if O is an open subset of QQ and if A¢ = 0 for
every ¢ € D(0), we say that A vanishes in O. Let W be the union of all open sets O € Q in which
A vanishes, we define the complement Q\W to be the support of A. In case Q =R" and A is a
tempered distribution, we can extend the notion of support in the same way:

Definition 2.25. A tempered distribution A € 8'(IR") vanishes on an open set O C R", if (¢, A) =0 for
all ¢ € S(IR") with compact support contained in O.

Proposition 2.26. If A € 8'(IR") vanishes on {O},cq where O, is open, then A vanishes on |Jyeq Oq-

Proof. Let T ={04}4ea where A vanishes in O,. Let {¢; }]?";1 be a partition of unity subordinate to
{Onlaea- If f € D(W) then supp f only intersects with finitely many Ogq), ie., f= Z;’il f@j where
only finitely many terms of this sum are different from 0. Hence Af =} gnie A(f @) = 0 since
supp(f ¢j) C Oq;- O

Thus we can define the support supp(A) of A € 8'(R") is the complement of the largest open set
O Cc R" on which A vanishes. In other words, A € 8’(IR") can be viewed as a distribution on D(IR")
simply by its restriction to D(IR"), where its support is already well-defined, and then take:

supp (A) := supp (Alpgn) )-

The definition of supp A implies that if ¢ € S(IR") with supp ¢ is compact and supp ¢Nsupp A =0
then (¢, A) = 0. The same still true even if ¢ doesn’t have compact support.
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Proposition 2.27. If ¢ € S(R") has supp ¢ Nsupp A =0 then (A, $) =0.

Proof. Let n € CZ®(IR") with supp 7 € B(0,1), [|5]l;1 =1 and 0 <# <1 on IR” with #(0) = 1. We claim
that
17(Ax)p(x) — P(x) in S(R") as A—0.

In deed, for any N € N and « # 0 we have
7 (Ax)(x) = p(0)lIn,0 = sup (1 + )N |9 (¢ (x)(5(Ax) - 1))|

xeR"

= sup (1 +[x) anﬁDa7ﬁ¢(X)Dﬁ(q(Ax) - 1)
xeR" =

< I;;(Caﬁ”(i)”N,a—/j)/\lﬁl(jgﬂg (Dﬂq)(/\x)|)

<) (capligpllna) VPlllos —0 as  A—o.
BLa

The case @ = 0 we have

I (Ax)(x) = p(x)lln,0 = sup (1 + )N [(p(x)(m(Ax) - 1))| < ||¢||N,o(sulg |n(Ax) - 1|).

x€lR"

By the fundamental theorem of calculus, for any x € R”, let y(t) = t(Ax), we have

1n(Ax) =1 =n(Ax)—n(0)
1
= (1) (1)~ (17)(0) = L Vn(y(s)-y'(s) ds

and thus

1
) A
()~ 1] SJ 9l 1y (s)] ds < SIVll — 0
0

uniformly in x as A — 0. Thus #(Ax)$(x) — ¢p(x) in §(IR") as A — 0. Clearly supp(y(A-)p) C
supp ¢ € R"\supp(A), thus (A,7(A-)¢) = 0 for all A > 0 and hence as a linear functional on 8(RR)
we have (¢, A) =1lim,_, ., (A, n(A)p) =0. O
Let’s consider n = 1 from now on.

. So far, we have studied that:

(a) If A is (identified with) a summable function then A s (identified with) a function in Cy(IR)
by Riemann-Lebesgue lemma.

(b) If If A is (identified with) a finite complex Radon measure in M(IR) then Ais (identified with)
a uniformly continuous bounded function.

(c) If Ais (identified with) a L?(IR") function with 1 < p < 2 then Ais (identified with) a function
in L(R) with p~' + 47" = 1.

Let’s pay attention to FL*® as the dual space of FL!. Every function f € L!'(RR) corresponds to a
tempered distribution f € 8'(R) acting by

Fis®@—e  maps 5= (7)== | ol dx
On the other hand, ]/‘\can be seen as a linear function acting on FL! by
Fiot e maps G (B0, e = (b e = L;pmm dx.

Their actions are identical on $(R), thus we have extended fas a linear function on S(I/R\) onto a
larger space FL!.
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7. We will extend the notion of support to linear functional FL®. Let’s recall the standard construc-

2.3

tion of mollifiers, we pick a function # € CX(R) with supp # € [-1,1], ||5ll;t =1and 0 <7 <1 on
IR, we then define

11
o(x) = m(nx) has € CER) supp e © [~ |, gl = 1.

Some facts about {17,,};”,
* In the sense of (tempered or D) distribution, we have 1, — &g in 8'(R) or D’(IR) as n —> oo.
» If p € D(R") then ¢ *1,, — ¢ in D(IR) as n — oo.
* If A € D’(R) then A*#, — A in D’(R) as n —> oo.

Since {17,}52; € D(R) C 8(IR), we have {i7,}77; C 8(RR) as well, and it is obvious that 7, — 5o =1in
D’(R). Furthermore

Proposition 2.28. We have 1j,, — do=1ace.

Lemma 2.29. Let 1 € L'(R") with ¢ = IIR" ) dx, then for any g € LY(R"). For A > 0 let’s define
alx) = /\,,17( ) then g =1, — cg in L'(R") as A — 0.

Proof. Obviously JIR” ma(x) dx = J]R” x) dx. For each x € R"” we have

(g*1ma)(x) —cg(x) = L{ (g(x -7) —g(x))m(y) dy = JIR (g(x— AY) —g(X))n(y) dy

and thus by using Fubini’s theorem

[ Mgem-ceof ax< [ ([ tgts-ap-gtolax)inilas

< [ Mg =gl dy— o
as A — 0 by dominated convergence theorem. O

Theorem 2.30. If ¢ € L (R) with supp(®) Nsupp(f) = 0 then
<af>§L1,§Lw =0

. 8(R) is an algebra under point-wise multiplication, therefore we can define the product v of a

function ¢ € 8(R) and a distribution v € 8’(RR) by

(P, ov)={(Pp,v) for all @ € 8(R).
It is clear that supp (¢v) C supp ¢ Nsupp v.

Pseudo-measures

e M(R), it can be identiﬁed with FL® by setting f(x) = u{—x) € L°(R) then by Parseval’s

formula and the fact that @ qo = 2np(—x) for ¢ € §(IR) we have

@)= f PE)aE) = fm(m—xmx) dx = fm@(x)f(x) dx

for any ¢ € 8(R), note that & € Cy(RR) by Riemann-Lebesgue lemma. Thus y = ]/"\e FL* as distribu-

tions (recall that F: 8§ — § is an is isomorphism). Thus we can conclude that M(ﬁ) Cc FL*™.

The elements of FL™ are commonly referred to as pseudo-measures. Note that M(R) is a relatively
small part of FL®; for instance, if ¢ € L*(R) is not uniformly continuous then @ cannot be a
measure.
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2. (Convolutions of pseudo-measures) We take something which we have proved for measures, as a

definition for the larger class of pseudo-measures.

Definition 2.31. If f,g € L*(R), then ]?,Zg\e FL® c 8'(R) as tempered distributions. We define the
convolution f *g of pseudo-measures f and g to be the pseudo-measure f g, namely

Note that this definition is consistent, in the sense that if f,g happen to be measures, then f +g

is their (measure theoretic) convolution. Indeed if f,g € L*(IR") such that f = y and g = v, then
f(x) = W(—x) and g(x) = V(—x). Recall that ji*=¥v(x) = 7i{x)V(x), by Parseval’s formula and F2¢(x) =
2np(—x) for ¢ € 3(IR) we have

vy = f () = fm(p(—x)mx)ﬂx)dx:fm (T dx = (9, f5) = 7).

. We will extend some results about supports of distribution to FL®. First of all, if f € L*(IR) and

g € 8(R), then g e 8(R) and thus the convolution f*?should be identical to the old definition of
convolution between distribution and test function (as a function)

(F+3)(&) = (F 7:R3).

It follows from (A * ¢)(x) = (A, T,$). We check that this actually agrees with our definition above.

Proposition 2.32. Let f € L®(R) and g € L'(R) N L®(R) then fg € L'(R) N L™(R), thus we have
f*g=3F(fg)is a function in Cy(IR), thus it makes sense to talk about its value at one point, and

(7)) =(F 7 R-) gy

Proof. If f € 8(IR) first, we can use the Fourier inversion formula for f(x) to deduce that

1= [ tagtar
:f(J;f(q)ezqudq)g(x)e—Zm'éxdx
= [ on( [, st 2mten ) an = [ Fopgie - = (Freee), .

Now using theorem 2.22 we can extend the result to all f € L*(IR). More precisely, let {f,} C 8(R)
such that f, BN f in L*(R) with ||f, ]Iz~ <||f]lz~, and f, — f a.e. Since f, € 8(R) we first have

fug(&) = <)?;, TgR@?Lw,ng forall nelN. (28)

By weak® convergence of f, EN f, we have
pt f fulx)gx)e™ dx = f flge ™ dx = lim f,g(&)=fg(&) (29)
n—o0 n—oo

for all & € R. On the other hand E = fin o(FL®,FL'), since for any ¢ € L!(R) then

nli—r>noo<ﬁ'$>?L°°,?L1 = Jim f" (x)p(x) J;R(f”)(x)(ﬁ(x) dx = <J?’ @?L‘”,?Ll ' (30)

Replace a)\by Tz Rgin (30) and using (28), (29) we obtain the result. O
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Corollary 2.33. If f € L°(R) and g € L' N L®(IR) then in terms of support of distribution we have
supp (f+g) € supp(f ) +supp (3).

Proof. We have _ .
(Fe&) = (e 88y e

Since g € Cy(IR) it makes sense to talk about the classical meaning of the support of g, observe that
ne&—suppg = &E-nésuppg = g&-1n)=0 = 1Rg(E-1)=0.

Thus supp (Té fR§) C £—supp g. Consequently, if £ ¢ supp g+supp fthen (& —supp g)Nsupp ]?: 0,
thus
supp(TgiR:g\) Nsupp f =0 = (f*+2)(&) = <f, TER@(;LMSLM =0

by theorem 2.30. From that we obtain supp (f *g) C supp f +supp . O
Indeed it is still true in the general case f,g € L*(IR).
Theorem 2.34. If f,g € L°(RR) then in terms of support of distribution we have

supp(f *g) € supp(f)+supp (2).

Proof. Let ¢ € § with $has compact support disjoint from supp ]?+ supp g, we will show that
(fg ¢)greo 11 = 0. Observe that

(T g s = [ FORIG0) 5= (F.3) e 0
After identifying with distribution, gfzﬁ can be seen as the convolution of two pseudo-measures
§=8+¢
and thus corollary 2.33 can be applied to deduce that
supp (&+¢) C supp g +supp = —supp g+ supp .

We claim that supp (:g:* (3) N supp ]?: 0, since otherwise there exists & € supp _;(\, 1 € supp @ and
C € supp g such that

E=n-C = 17:E+Cesuppfﬁﬂ(suppf+supp§)=0
which is a contradiction. Thus §<\p € FL! with support disjoint from supp f, which implies
<fg,¢ >3"L°°,?L‘ - <f’g¢>§Lm,?L1 =0
by theorem 2.30 and the proof is complete. O

. We now show that a pseudo-measure with fintie support is a measure.

Theorem 2.35. A pseudo-measure carried by one point is a Dirac measure.

Proof. Let f € L*(IR) and assume supp ]?: {0}.

Claim. If ¢1,¢; € A(R) = F(LY(R)) and @1(&) = @,(&) in a neighborhood of & = 0, then we have
supp(¢1 — ¢,) is compact and away from {0} = supp f, thus

<]? $1- (P2>3"L°°,£TL1 =0 = <]? 1 >1TL°°,SFL1 - <J? (p2>§Lm,§L1 :
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Thus we can define ¢ = <]"\, @) where @ is any function in FL! which ¢(&) = 1 in a neighborhood of
& =0, and ¢ will be well-defined independently to ¢ € FL!. Let’s recall the Fejer’s kernel

. 2 .
K(x):%(mz;;/z) has  X(£) = max {1 —|&],0).
Since K € L(R), we have
(FeX)&) =K@ =(Feek) - =(FRE =)y gy

And _ _ -
supp fK Csupp X +supp f =[-1,1]+{0} =[-1,1].

Thus if [£] > 1 we have fﬂ\C(é) =0.
o If -1 <& <&, <0, there exists € > 0 such that &; =5 € (-1,0) for all i1 € (—¢,¢), then
K& -n)-K(E —n)=&-&  forall  ye(-ge).

Let’s define J(n) = (&, — &1)x () where x € C° with x = 1 in (-1,1). It is clear that since
x € CZ(R) C 8(R), we have J € FL. Tt follows that K(&, —)—K(&, —+) = J(17) where 11 € (—¢, €),
the claim implies that

(FX(&—)-K(&-)

FLo,FL <f' 3)3100,%1
and hence

FR(E) = FR(ED) = (F18) gy g1 = (2= E0)

Since £ — fi{(é) is continuous, upon letting £; — —1 we obtain fﬂ\C(é) =c(l1+¢) for -1<
& <O0.

o If 0< & <&, <1, there exists € > 0 such that §; —#1 €(0,1) for all i1 € (—¢,¢), then
K(Er—n)-K(E —n) =& —&  forall  5e(-ge).

Let’s define J(1) = (&1 — &2)x (1) where x € C® with x =1 in (-1,1). It is clear that since
x € C2(R) C 8(RR), we have J € FLL. Tt follows that K(&, —+) =K (&, —+) = I(n7) where 17 € (~¢,¢€),
the claim implies that

<J? K& =) = K(&2 - ')>§Lw,3"Ll - <J? 3)3100,311
and hence _ . ,\
FR(E) = FRED = (F18).1 0 gy = clE1 = E2).
Since £ — ]‘/U\C(é) is continuous, upon letting £&; — 1 we obtain fﬂ\C(é) =c(1-&)for0< &< 1.

From that we have _ _
fX(E) = cmax {1l —|&],0} = cK(&).
By the uniqueness of Fourier transform on L!(RR), note that fX € L!(IR, we have
F(fK-cXK)(E)=0 = fX=cX = f=c ae

and thus J,’\: cdy. O
. Theorem 2.35 implies following approximation theorem.

Theorem 2.36. Let & € R and denote I(&) = {f € FL! : f(&) = 0} and Io(&) = {f € S(R) : & & supp f),
then Io(&) is dense in 1(&) in the topology of (FLY, || - [lg11)-

Proof. Note that I;(&) and I(&) are linear sub-spaces of FL!. If the conclusion of the theorem is not
true, then by Hahn-Banach theorem there exists ]?e (FL')* = FL* such that fdoesn’t vanish on
I(&)and (q’o\,)?) =0 for all p € I§(&). It is easy to see that supp f: {0}, and thus by theorem 2.35 we
have ]?: cdg for some c € R, then obviously ((’p\,f\) =0 for all ¢ € I(£), which is a contradiction. [J
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3 Almost periodic functions on the real line

Let f be a complex-value function on R and let € > 0. We call
* An e-almost period of f is a number 7 such that sup, g |f(x—1) - f(x)| <e.

* A set § C Ris called “relatively dense” in R if and only if there exists a constant A = A(F) such
that (x,x+ A)NF =0 for all x € R.

* A continuous function f is (uniformly) almost periodic, denoted by u.a.p if for every & > 0, the set
J, of all e-almost period of f is relatively dense in RR.

We denote the space of all uniformly almost-periodic functions on R to be AP(RR), and for f € AP(R) we
denote by A = A (¢, f) the length of the interval in the above definition. Some examples and properties
of functions in AP(R) are:

* Continuous periodic functions are almost-periodic.
* f(x)=cosx+ cos(V2x) is almost-periodic but not periodic.

» If f € AP(R) then so are |f], f(if fmakes sense), af for any a € C and f(Ax) for any real A.

3.1 Definition and basic properties

1. We have AP(R) c BUC(RR). Indeed, take A = A(1, f) and for any x € R let 7 € (x — A,x) be an
1-almost period then

IfE)I<1+|f(x-1)[ <1+ sup |f(x).
x€[0,A]

For € > 0, let AA(¢e/3, f) then since f is uniformly continuous on [-2A,2A] there exists 0 <6 < A
such that |f(x) - f (v)| < § whenever x,y € [-2A, 2A] with [x—y| < 6. Let T € (x—A, x) be an §-almost
period of f, then for any vy € IR with |x —y| < 5 we have

£~ FOI I~ Flx= Dl +1fx=) - f - DI+ fG) - fy-Dl < 5+ 5+ 5 =¢

where in the second term we used the uniform continuity of f on [-2A,2A].
As a corollary, it is easy to see that if f € AP(RR) then f2 € AP( IR).

2. For a function f € L°°(IR) we denote we denote by f,(x) = 7,f(x) = f(x —a) the translation with
ae R, and Wy(f) = {f,(:) : a € R} set of all translations.

Theorem 3.1. A function f € L*(R) is uniformly almost periodic if and only if Wy(f) is precompact in
metric space L™ (IR).

3. The translation convex hull W(f) of a function f € L*(IR) is the closed convex hull of J,<; Wo(af).
In other words, it the the set of uniform limits (in L*°) of functions of the form

m

m
Zaerkf where X €R, Z|ak| <1, m e N.
k=1 —

For f € L*(R), we define
W'(f) = closure{(p*f el w) < 1}.
Here by closure we mean the closure in L*(IR).

Lemma 3.2. If f e BUC(RR) then W/(f) = W(f).

Lemma 3.3.

(a) If f € L(R) then for every & € R we have W (e/**f) = {ei¥*g : g € W(f)}.
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3.2

(b) If f € Co(R) then W(f) C Co(R).

Theorem 3.4. If f € L*(IR), we have W(f) is convex and closed in L*(IR). Furthermore W(f) is
compact iff Wy(f) is precompact iff f € AP(RR).

This characterization of AP(IR) gives us a powerful tool to prove the following theorem.

Theorem 3.5. The space of uniformly almost-periodic functions AP(R) is a closed sub-algebra of L (RR),
i.e it is closed as a sub-space, also closed under multiplication and addition.

Proof. Let f,g € AP(IR), we first show f + g € AP(R). Observe that W(f +g) c W(f)+ W(g), and
since f,g € AP(RR) we have W(f), W(g) are both compact in L*(IR), thus W(f)+ W(g) is compact,
therefore W(f + g) is a closed subset of W(f) + W(g), thus W(f + g) is compact and hence f + g €
AP(R). Since f2,¢%,(f +g)?> € AP(R) we have

fg= %((f+g)2—f2—g2)eAP(H?)-

We have proved that AP(IR) is a sub-algebra of L°(IR). Now let’s consider f in the closure of AP(IR)
in L*(IR), it is clear that f is bounded uniformly continuous. Given ¢ > 0, we can find g € AP(RR)
such that ||f - gllz~ < §. Now let 7 is an §-almost period of g, we then have

sup|f(x—7) - f(x)| < sup|f (x —7) —g(x — 7)| + sup|g(x — 7) — g(x)| + supg(x) — f(x)| < &.
xeR x€R xeR x€R

Thus 7 is an e-almost period of f, and every interval of length A (%, g) contains an ¢-almost period
of f,so f € AP(R). O

As a consequence, sum of any finite almost-periodic functions is again almost-periodic.

. A trigonometric polynomial on R is a function of the form f(x) =} /_, age’** where a; € C and

&k € R are called the frequencies of f. Theorem 3.4 says that all trigonometric polynomials and its
uniform limits are almost-periodic.

Mean value of almost periodic functions

. The norm spectrum of a function f € L*(IR) is the set

o(f)= {E eR:ae'* e W(f) for a complex number a = 0}.

Note that o(f) maybe empty, for example if f € Cy(RR) then W(f) C Co(RR) by lemma 3.3, but there
is no a # 0 such that ae’®* € Cy(RR) for some &.

Lemma 3.6. For f € L°(R) and & € R then G(eié(')f)=6+(7(f)={é+l’] :nea(f))

. If f € L®(R), f can be seen as a tempered distribution on 8(IR), which can be extended to a linear

functional on FL! by

(@ F) i1 g0 = (b Fr g = J;R¢(x)m dx  forall ¢eLl'(R).

The multiplication of a distribution with a function g € L* function is defined by the action

<¢\’ gf>§L1,§L°° - <¢§’ f>§L1,5fL°° '

The notion of support of ]"\extends naturally and consistently onto the new test space FL!.

Proposition 3.7. If f € L*(IR) then o(f) C supp f
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Proof. As a distribution, for any a € R we have

wf(€)=e"f(&) = supp(f)=suppf.
Consequently, any ¢ € W(f) satisfies supp ¢ C supp ]? Indeed:

* Any finite convex combination of translations is clearly has support contained in supp ]?

* When ¢ € W(f) is the uniform limit of a sequence ¢,, where @,, are convex finite combination
of translations, i.e. ||¢, — @|l;~ — 0, then since supp @, C supp f, for any ¢ € L!(R) with
supp ¢ Nsupp f =0, we have supp ¢ Nsupp @, =0, thus

57 = lim ($n), =
<¢’ qo)ffﬂ,fﬂw H—>00 b Pn FLI,FL®

since @, — @ in FL®. Hence as a distribution, ¢ vanish on R"\supp f, i.e., supp ¢ C supp f

If p(-) = ae*l) € W(f) then () = 2mady(- — &) must satisfy supp ¢ = {&} C supp }7\ Thus we have
proved that & € o(f) implies & € supp f. O

. The Fejér kernel KX, is a approximation of identity as A — oo. However as A — 0 we have the
following result.

Proposition 3.8. Let f € BUC(IR), assume that X  f converges uniformly in L normas A — O toa
limit which is not identically zero, then 0 € o(f).

Proof. Assume X * f — u in L®(R) as A — 0, let’s define g, = K, * f € L°(RR) for A > 0 then as
distributions we have

g’}:j?(j)f:e"fL“’ = supp:g\/\Csupp%(X)ﬁsuppj?C (A AL

Since g3 — % in FL® as A — 0, we have supp @ = {0}. Indeed, if ¢ € L'(R) with supp @ is
compactly supported away from {0}, there exists Aq > 0 so that supp ¢ N[A, A] =0 for all A < Ay,
thus (@, §1) 511,51 = 0 for all A < Ay which implies that (¢, %) 51 g7« = 0, and since u Z 0, we have
supp u = {0}. Since supp % = {0} we have & = cd, for some c = 0, which implies u = c. By lemma
3.2, we have

=K +feW(f)forall A = u:/\limog,\eW(f)

as the limit is taken in L* norm. Thus we have shown that 0 = ¢ € W(f), which mean 0 e o(f). O

Note that within our notation:

¢ As A DISTRIBUTION U we have

— 1 - —
So==—, 1=8, Tw=-—i
0 e 0 u u

and if ¢ € 8(IR) is a test function then

* As A MEASURE we have
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4. If y € M(R), it can be identified with FL® by setting f(x) = u(—x) € L*°(R) then by Parseval’s

formula and ]"\(x) =21 f(—x) we have
@y = [ PETHE = [ (-0t dx= [ i dr= (7)1

for any ¢ € L'(R), note that ¢ € Cy(R) by Riemann-Lebesgue lemma. Thus y = ]/‘\e FL*, note that
there is no factor 27 in this case, based on our notations.

Corollary 3.9. Let y € M(IR) and assume u({0}) = 0. Let f(x) = u(—x) then 0 € o(f). In fact we have

Jim [|3¢3+ f = (O] = 0.
Proof. Let gy =X, = f then ) = 5’2/\ He M(ﬁ{\) For any test function ¢ € L”(ﬁi) we have

Lewamen= [ [1-5oercrye e
R

R
= poomton+ [ (1= Jotercamon) ) — oo
R

as A — 0 by the dominated convergence theorem, since x(_j1)\(0j — 0 point-wise everywhere

and (1 - [&]/A) (&) is bounded by ||¢|| ~. If we restrict the space of test functions to Cy(IR) then it

gives BN u({0})og in the weak™ topology of M(ﬁ?\), or in the distribution sense. In deed from the
above estimate we get

( £l
<ligll -2
J(=4L\(0)

[ dfe-ionao) ) alue) <=1, 10 0)

which gives us, by Rieze representation theorem

[ = (10D 30|y = sup fﬁw d(g - p(10Ddo)| < 1ul((A, M\{0}) — 0

llplleo <1
thus gy — u({0}) uniformly in L*(R) and the result follows from proposition 3.8. O
5. In fact proposition 3.8 is true for any general summability kernel.

Proposition 3.10. Let f € BUC(R) and F € L'(R). Define F(x) = AF(\x) for A > 0. Assume that Fy»f
converges uniformly in L* norm as A — 0 to a limit which is not identically zero, then 0 € o (f).

Proof. Assume Fy*f — uin L®(R)as A — 0 and u # 0. Let X,,(x) = nXK(nx) where X is the Fejer’s
kernel as usual and n € N, let G,, = F +X,, then G,, — F in L'(RR) as n — co, then H, = F -G, €
L' (R) with ||H,||;1 — 0 as n —> co. We have the decomposition

F=G,+H, lim ||H,|l;: =0, G, =FX, is compactly supported in [-n,n].
n—oo
For each 1 > 0, let

Gn,/\(x) /\Gn(/\x)
Hn,)\(x) = /\Hn(/\x)

= Fy(x) = Gya(x)+ Hy 1 (x) for nelN,1>0. (31)

Since é;\(é) = a\n(é), for each A > 0 and n € N we have

supp Gy1*f =supp (Gya- f) Ssupp Gy1 C [-An, An) (32)

Let A = -, from (31) we have
n

F o2xf= GP,;-z\*f + H—;;f as elements of FL™. (33)
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Since f € L*°(IR), we have

WH,, -2 % flleee <N fllpeollHp, w2l = f o lHyllpr — 0 as n—> oo
From that and (31) we obtain G, ,,-2 * f — u in L*(IR), which means G;;f — win FL*®, and

together with (33) we obtain supp u# = {0} by an argument similar to the proof of proposition 3.8.
Therefore u = ¢ for some ¢ # 0 and by lemma 3.2, we have

FyxfeW(f)forall A = u:/\limOF,\*fGW(f)
in L* norm. Thus we have shown that 0 # c € W(f), which mean 0 € o(f). O

6. The condition of existence of a uniform limit of F » f as A — 0 can clearly be replaced by the less
stringent condition of the existence of a nonvanishing limit point.

Proposition 3.11. Let f € AP(R) and assume 0 & o(f), then for any F € L'(IR) we have

li F oy = 0

,\inoH A* Sl (R)
where F)(x) = AF(Ax).
Proof. Since f € AP(R), W(f) is compact in L*(R) and {F, * f} 150 is a sequence in L*(R), if the
claim is not true then there exists a sequence A, — 0 such that F) *f — u in L*(RR) as n — oo
where u € L*(R) so that u #z 0. Proposition 3.10 implies that 0 € o(f), which is a contradiction. [
Conversely, we have the following:

Proposition 3.12. Let f € AP(R), F € L'(R) and LRF(x) dx = 0. If for some sequence A, —> 0 we have

/\}inoo”F/\” “Flliom =0

where F)(x) = AF(Ax), then 0 ¢ o(f).

Proof. It is easy to see that for any translation ¢ = 7,(f) we have [|[Fy *@|l;o = [|F), * fll~, thus
limy ||F/\n * 90||L°°(1R) = 0. Consequently this limit holds true for all ¢ whose are finite convex

combinations of translations, which in turn implies lim) _,, ”F/\n * (p||L°°(IR) =0 for all p € W(f).

To be precise, let {py} be a sequence in L*(IR) where each ¢y is a finite convex combination of
translation of f, and ||gx — @[z~ — 0, we then have lim,__,|[F), * @kll;~ = 0 for all k € IN, and

[EA, * @l < ||Fa, * @kl o + [|Fa, * (0 = @] < ||F, * @kl oo + IE, et 0k = oo

Since ||Fy ;1 = [|Fllz1 for all n € IN, let n — co we obtain
limsup||Fy, * ||, <IIFllzillox— @l
n—oo

Now let k — oo we obtain the limit is zero. Now we observe that:
Oea(f) = there exists a constant C # 0 such that C e W(f).

Thus if 0 € o(f), with the constant C as above we must have

lim ||Fy #C|lf~ = C(J F(x) dx) =0
A,—0 " R
which is a contradiction. O

7. We are now ready to prove one of the most important property of almost periodic functions.
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Theorem 3.13 (Mean-value theorem). To every f € AP(IR) there corresponds a unique number M(f),
called the mean value of f, having the property that 0 ¢ o(f -M(f) ) Furthermore, for any F € L'(R) if
we set Fy(x) = AF(Ax) then

/\lii)nOHFA*f—f(O)M(f) =0.

([

Proof. Recall that for X,(x) = AK(Ax) we then have {K, = f},5¢ is a subset of the compact set
W(f) C L*(R), thus to any sequence A, —> 0 there corresponds a subsequence and a limit point
K/\”k * f — u in L*(R) as A, — 0, and u = C as a constant by proposition 3.8. Let a be such a

limit point of a sequence fK,\nk * f as A, — 0 like that, we have

=0.

,\nlkigo”:K/‘n *f _O‘HL“’(IR) - /\,}:EOHK’W +(f _a)“L“(lR)

By proposition 3.12 we obtain 0 ¢ o(f — ), consequently proposition 3.11 implies that the limit
above holds for the full sequence A — 0. If B is another constant such that 0 ¢ o(f — ) then by
proposition 3.11 we must have

}igl()”%*(f _ﬁ)HL‘X’(IR) =0

and hence
ja—pl= lim [Ky+(@=p) |y =0 = a=p.

Thus the property 0 ¢ o(f — a) determines & uniquely and we set M(f) = a. Finally by replacing
the Fejer’s kernel X by F € L'(R) and using proposition 3.11 with f being replaced by f —F(0)M(f)
we obtain the second limit. O

In particular, by taking some specific F € L!(IR) we obtain the following:

Corollary 3.14. Letf € AP(R) then
1 0
M(f)—hm— f dx = linmﬁj f(x)dx= hmT _Tf dx = hm —j flx

. Using the mean value we can determine the norm spectrum of f € AP(IR) completely. From lemma
3.6 it is clear that

Eeo(f) — 0€o(fe e =  M(fe¥)=0. (34)

Recall that every measure y € M(IR) can be decomposed to a sum p = l4c+l4d where p, is continuous
and py is discrete. If f is a measure then corollary 3.9 implies that f({0}) = M(f) and 51m11ar1y

f({cf}) M(fe "¢¥) and thus we can recover the discrete part of f. We shall soon see that f has no
continuous part when f € AP(RR).

. We summarize some basic properties of the mean value of f € AP(IR) in the following theorem.

Theorem 3.15 (Basic properties of the mean value). For f,g € AP(R) and a € R we have

(@) M(f +8) = M(f) + M(g), M(af) = aM(f) and M(z,f ) = M(f).
(b) If f(x)>0and f 0, then M(f)> 0.

Proof.

(a) Using the mean value theorem, let F € L!(IR) with IJRF(x) dx =1, and F,(x) = AF(x), we then
have

Fyx(af +g)=aF *f +Fy*g = M(af +g) =aM(f)+M(g)

by letting A — 0. For translation, we have

(Fax(taf)(x) = (Frxxf)(x—a) = M(t.f)=M(f)

by letting A — 0 since the limit is uniform in L*(IR).
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(b) Since f # 0 and M(7,f) = M(f) for all a € R, we can assume f(0) > 0. Since f is continuous,
there exists ¢ > 0 such that f(x) > € on [-¢,¢]. Let A = A(%,f), for any interval of length A,
say [a,a + A] we can pick 7 € [a,a+ A] as a §-almost period of f, then

for all xe[t—¢1+e]

suplf(x+7)-f(¥ <5 =  flx)>

xeR

N ™

Since T € [a,a+ A], we have I, = [g,a+ A]N [t — & T + ¢] is non-empty and is an interval of
length ¢, consequently

_f flx dx>— Pf(x)dxzeA—z.

It holds true for all a € R, let a = nA where n=1,2,... and by corollary 3.14 we obtain

1 n-1 1 (G+DA &2
M(f)= lim —J f(x)dx= lim — KJ] f(x)dx 2X>0.

n—oo nA n—oco 1

3.3 Pre-Hilbert space structure on AP(RR)

Let J{ be a complex vector space, an inner product (or scalar product) on H is a map (x,y) — (x,y) from
H x H +— C such that:

1. {ax+by,z) = a(x,z) + b(y,z) for all x,y,z€ H and a,b € C.
2. (,x)=(x,p) forall x,y € H.
3. (x,x) € (0,00) for all nonzero x € H.

A complex vector space equipped with an 1nr1er product is called a pre-Hilbert space. If H is a pre-
Hilbert space, for x € H we define ||x|| = v(x, x). By Schwartz inequality |<x,y>| < |Ixlllyll we deduce that
x > ||x|| is a norm on . If x,y € J{ and (x,y) = 0, we say x is orthogonal to y and write x Ly. If E C H
then E+ = {x € 5 : (x,y) = 0 for all y € E} is a closed subspace of K.

Proposition 3.16. If x,, — x and vy, — v then (x,,v,) — (x, ).
Proposition 3.17 (The Parallelogram Law). For x,v € 3 then ||x + v||* +|lx — v||* = 2(lx[|> + [Iv]|*).
Proposition 3.18 (The Pythagorean theorem). If xy,...,x, € H and x; Lxy for j # k then

2
n n
2
) x| =2l
=1

j:l
A subset {ug}qea of H is called othonormal if [|u,l| = 1 for all @ € A and u, L ug whenever a_LB.

Proposition 3.19 (Bessel’s inequality). If {114 }qca is an orthonomal set in H, then for any x € H !

Y K g < lxl.
acA
In particular, {a € A : (uy, a) # 0} is countable.
Theorem 3.20. If {u,}yeq is an orthonormal set in 3 then the following are equivalent:

(a) (Completeness) If (x,u,) =0 for all a € A then x = 0.

IWhere Y g f(x) is the supremum of ¥ cf f(x) over all finite subset E C S.
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(b) (Parseval’s Identity) ||x[|> = ¥ yeq [{x, tig )|? for all x € H.

(c) Foreach x € J(, x =) ,ca ) rerc{X, Ug ), where the sum on the right has only countably many nonzero

terms and converges in the norm topology no matter how these terms are ordered.

. (AP(IR) as a Pre-Hilbert space.) Recall that AP(IR) is a sub-algebra of L*(IR), we now define the
inner product on AP(IR) by

(f,&m:=M(fg)= llnloo 2TJ fx dx  forall  f,g€AP(R).

It is clear that this inner product is well-defined and hence (AP(RR),(-,-)5s) is a pre-Hilbert space.

Proposition 3.21. In the pre-Hilbert space AP(RR) defined above, the exponentials {ei‘f"}ggm form an
orthonomal family.

Proof. We have
T o
<ei£x’eir]x> - lim — 1 e,’(g_q)x dx = {1 ifé=y9
M .

T 00 2T 0 if&=y
O
Let’s introduce the notation?
Fey = (f, ), =M(fe0).
Recall (34) we have N
ceo(f) <= f({ep=0. (35)

In other words, ]?({5 }) are the Fourier coefficients of f relative to the orthonormal family {e'¢*} R
The Bessel’s inequality reads

Y IFUED]” << Fome = M(IfP2).

éeI/R\

It follows that {5 eR: f({é}) 2 0} is a countable set, thus together with 35 we have o(f) is countable
for all f € AP(RR).

. (Convolution in AP(IR)) We now introduce the mean convolution f %, g of two functions f,g €
AP(RR) as following:

o) =M((wef)) = tim o [ se-vig

Since AP(IR) is a sub-algebra of L*(IR), (Txf)g € AP(R) provided f,g € AP(R), thus the above
definition is well-defined.

Proposition 3.22. If f,¢ € AP(R) then f *p; ¢ € AP(R). If M(|g]) < 1 then f *p; g € W(f).

Proof. Let’s consider g € AP(R) with M(|g|) < 1. For each n € N large, we define

1 1 1 n
9u=gpAang SLR) has g =5 | Istoldx (36)

By the mean-value theorem, we have ||g,||;1 — M(|g]) <1 as n —> oo, thus for n large enough we
have ||g,|[;1 < 1. Theorem 3.2 implies that

n
XH%J flx—v)g(v) dy = f = g,(x) e W(f) for all n large.
-n

2By abuse of language we refer to f({é}) for f € AP(RR) as the mass of the pseudo-measure 7at £.
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The compactness of W(f) implies that there exists a sub-sequence {n;} C IN such that f g, — h
uniformly in L*(RR). On the other hand, for each x € R we have

(7 en) =53 [ 79 ay— s
as ny — oo. Thus f ), g = h point-wise, hence
Tim [1f * gy~ f o gl = 0.

Thus f #p1 g € W(f), hence it is uniformly almost periodic. The case M(|g|) = 1 and the general case
follow from scaling and linearity of the mean value. O

Proposition 3.23. For f,g € AP(R) and & € R then
(a)

(f *m 8)(1E) = FUENTUED).

(b) | _
(f#m €0 (x) = F{eDe™.

As a consequence, if g(x) = Z] 14 1% then

(f *Me Z()(]f Zéx.

Proof. By definition we have

(F oo ) (€D = M ((f ur )e™) [M (x= y)g(y)) _iéx].

Given ¢ > 0, by the property of mean value, there exists n; € IN such that

1 (" . . e
—i&
2n L My(f(X—y)g(y))e’é" dx—Mx[My(f(x —y)g(y))e ’ "] <y for uxzm.
Similarly, there exists n, € IN such that
1k €
o | s ay-m(fe-pgw)| <5 for ke
—k
which implies that
L nM (f(x—y)g(y)) T g - fx v)g el < S for  kxk
2n J_, 7 2k ) = k2.

From these facts we obtain

n k
‘(f s)en-o; [ (5 [ £t ap)ees ax

for n > nq,k > n,. On the other hand by the mean value theorem there exist n3, n4 such that

<e (37)

1 L —i&z
‘f({é})_ 2_11 Inf(Z)e dz| < W for n> ns
and .
1 . €
e -7 (2)e7¢% dz| < ———  f k> ny.
‘g % Jkg P Fuepe
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By Fubini’s theorem, the latter term in (37) can be written as

i1k 1
o - _ —i&x - —l(,}l E(x—y
n(zkfkf(x y)g(y)d) dx=— ( f flx=y)e )dy
and thus
L (L g ag)eivs ax—(L [ gieier ay)Figen| <
2an ) \2k ), X=y)8\y)ay e 2% 7kg3’e y s¢€
for all n > n3, therefore
1 ("1 (* " —
o 5 [ s st ap)e i ax-guenrien| <
for n > n3, k > ny. From (37) and (38) we deduce that
[(Foueg) 1D - Fltengen| < 26
for all € > 0 and hence the result follows. For the second part we have
vy e0) - _ i
(fom e’ )(x)_Th—>nlo<;2T_f flr-y)e™ dy
— & i& i& iy i
=xmp = im g [ ey e <m0 < e
The latter result follows from linearity of the mean value of functions in AP(IR).
. Now for f € AP(RR), let’s define f* f ie., f*(x) = f(-x)and
h=fof' e,  hix) :My(f(x+y)m).
By definition we have
e — —15x — 2 e TIEX gy = L Jei&x
Ften =m(rwe) = tim T ax= tim o (pteneies e=Tie)

and thus by proposition 3.23

h({e) = FUenf(en = |Fuenl™
Also it is easy to see that if |||y~ < 1 then h € W(f) by proposition 3.22.

Lemma 3.24. The function h = f*sy, f is positive definite, in the sense that for every choice of &1,...,

R and complex numbers Ay,..., A, we have

Zh —&)Aj AL 2 0.

jk=1

Proof. We have

D (g - E0A Ak = hmJ [2T D+ 0f €l Ak]d
k=1

jk=1

. Tl 2
= lim_ . ﬁ|j’kzif(£j+3€)/\j| dx > 0.
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For f € AP(R) then h = f #); f* € AP(RR) is continuous and positive definite. Bochner’s theorem
says that h is the Fourier transform of a positive measure or equivalently, & is a positive measure.

. (AP(R) is a pre-Hilbert space.)

Theorem 3.25 (Fourier inversion formula). If f € AP(R) and f e M(R), then

f=) Fuehse  with  Ifllyg =) N

geR &eR

=) Flene,

éefﬁ

and we have an inversion formula

Proof. Let’s write f = j+ v then the discrete part of f is v = deﬁi]’(\({é})éé' where the series con-

verges absolutely in the normed space M(R). We claim the continuous part u=0. We have
p=F-) flens
EeR

Here we understand og(x) = bo(x &) as measure in M( ). Let g(x) = pi(—x) then g = p as distribu-
tions. As measure, we have 55( x) = ¢7**, and thus (as Fourier transform of measure)

g() =fi—x) = f(x)- ) _fl{eDe*
EeR
where the sum converges uniformly in L*(R), as F : M(R) — BUC(R) with |[7]|;~ < ||v||M(® for

Ve M( ). Since AP(IR) is an algebra and the sum converges uniformly in L®, we obtain g € AP(RR).
Now by Wiener’s theorem for measures in M(IR) we obtain

0= i) = im —f AP dx = hmj 1g(0P dx = M(Igl?)
£eR

Since |g|> € AP(RR) and |g|?> > 0, theorem 3.15 concludes that g =0, thus y=g=0asa distribution,

and thus as a measure. Thus we have proved that ]"\: deﬁgf({ })os and hence ||f||IR Z.EGIR |f
follows. The inversion formula follows from the fact that g = 0.

This theorem enables us to show the following version of Parseval’s formula:

Theorem 3.26 (Parseval’s formula). Let f € AP(IR) then
Y IFUEN? = M(fP)
éeﬁ
Proof. Let h = f #); f* then T € M(R) and thus theorem 3.25 can be applied to deduce that
= ) &) =) IFOPF =MUfP).
éeﬁ éeﬁ

O

From that we can conclude that AP(IR) with the pre-Hilbert and {e!¢()) scRisa complete orthonor-
mal basic for AP(IR). Note that it is not a Hilbert space with the norm induced by the mean value.
The uniqueness reads

Corollary 3.27 (Uniqueness). If f € AP(R) and f z 0 then o(f) # 0.
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For f € AP(IR), the series Zéeﬁ]"\({é})eié", to which we refer as the Fourier series of f converges to
f in the norm induced by the (mean valued) inner product (-, -)y;.

. We will show that the Fourier series of f € AP(R) is indeed summable to f in the uniform norm.

Lemma 3.28. Given a finite number of points &;,..., &y € R and an € >0, there exists a trigonometric
polynomial B having the following properties: B(x) > 0, M(B) = 1 and B({;}) > 1—¢ for j=1,2,...,m

Proof. Let A1, Ag be a basis for &y,..., &, that is, Ay, Aq are linearly independent over Q and

every &; can be written in the form &; = ZZZI CjkAx for j=1,...,m where c; ; are integers. Let 6 >0
such that (1 -0)7>1—-¢ and let
-1
N>o n}’%x|cjrk|.

Using the discrete Fejér kernel X,,,(x) =Y ", (1 - %)eﬁx, let’s define

B(x):l_l ) :ﬁ[ Y ( N“-kfll) i Am]

k=1 k=1 \Ily=-N
= ]_ﬁ 1—- —1_ |l| 11/\1+ +l/\)
N+1/" N+1
lkl<N

It is clear that B(x) > O since it is the product of non-negative functions Ky (Axx). Since B(x)
is a polynomial (which is quasi-periodic), a simple argument showing that it mean value is the
constant term in it representation, which is the term corresponding to (Iy,...,1;) = (0,...,0), thus

M(B) = ﬁ(O) = 1. Finally for each j =1,...,m we have

q 9 .
ﬁ({(fj}):ﬁ[{ZC]’k/\k}]ZM(Be iej ArtetejpAr)x ):I_[(l—ll;":_kll)>(l—6)q>1—€

k=1

where we have used the fact that ﬁ({éj}) is the constant in B(x) which corresponds to the case
(..., 1g) =(¢j,1,---,€j ), thus the proof is complete. O

Theorem 3.29. Let f € AP(R), then f can be approximated uniformly by trigonometric polynomials
P, e W(f)

Proof. Since o(f) is countable, we can write it as {5]-}]?";1. For each n € N, let B,, be the polynomial

described in the lemma 3.28 for &;,...,&, and € = % For each n € N we have P, = f *); B,, € W(f)
by proposition 3.22 and for each &; € o(f) then

P& = FUE BN — FUE)  as n— oo
If £ ¢ o(f) then P,({&)) = f({é}) =0 for all n € N. Now {P,},,c is a sequence in the compact space
W(f), thus it has limit points. Assume P,, — u uniformly as n; — oo where u € W(f), then
T

1
< dim 77 | [Pu®) - u()] dx <|IPy —ullw — 0

[P (€D = TUEN] = [M (P, () - () )

as ny — oo. Thus u({&}) = ]?({5}) for all £ € R, which implies u = f by the uniqueness. Thus there
only one limit point and the convergence holds in the full sequence P, — f uniformly in L*(IR).
Note that P, is a trigonometric polynomial by proposition 3.23. O

. We have a simple lemma:

Lemma 3.30. If f, be a sequence in AP(R) and f, — f uniformly on R, then M(f,) — M(f) as

n— oQ.
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Proof. For any T >0 we have

o | (p0-sio)a

for all n € IN. Given € > 0, we can choose n large such that ||f;,— ||~ < ¢, then in the limitas T — oo
we obtain limsup |M(f,) — M(f)| < € and hence M(f,) — M(f) since ¢ is chosen arbitrary. O

s%j ()= F(Ol e <I1fy — e

The trigonometric polynomial that approximates f € AP(IR) in theorem 3.29 has the property

— — —

M(P,) = B,({0}) = f +u B,.({0}) = F({0})B,({0}) = £(0) = M(f)
by proposition 3.23.

Theorem 3.31. If f € AP(IR) with M(f) = 0 then its anti-derivative

= J(;xf(t)dt

[x]—0 X

satisfies

Proof. We have

li 0.
|x|£>noo X |x|—>oo X J f )
[

An analog of theorem 1.1 is not true generally for AP(IR). Anti-derivative of a almost periodic
function with mean zero is not necessary be bounded. Indeed, since AP(RR) is a Banach space
under the uniform norm, if for all f € AP(R) has mean zero then its anti-derivative is bounded,
then the following operator is well-defined:

T : (AP(R),||- |lze) — L®(R)
fr—Tf where J- f(t)

It is clear that T is linear. Let’s APy(IR) be the set of functions in AP(IR) with mean value 0, we first
see that APy(IR) is a closed subspace of AP(IR) under the uniform norm by lemma 3.30. We will
use the Closed Graph Theorem to show that T is bounded. Indeed, if f, — f in AP(RR) under the
uniform norm and T f,, — g in L*°(IR), then for each x € R we have

ITf(x) =g <ITf =T fullpeo-lxl +IT fir = 8llpeo — O

as n— oo. Hence Tf = g and by Closed Graph Theorem T is bounded, i.e. there exists a uniform
constant C such that

IT fllze < ClIf Il

for all f € APy(IR). This is absurd, since for example let us take f(x) = e/** then Tf(x) '/’\ eltx,
hence .

ITfle<Clifl = |3]<c
for all A = 0, which is clearly false.

A constructive example is as following:

Theorem 3.32. Let us consider

= 1 ;.

Zﬁ ¢ ¢ APy (RR).
n=1

It is clear that the series converges absolutely in L*°(IR). The anti-derivative of f is well-defined but it is

unbounded.



3.4

Proof. Let

x x M 1 . 2, m
=| f()dt and Fm(x):j —e" = (- el % _
J Lo I le

for m € IN. Observe that by the Euler’s formula we have

' x X X X\ _jx
e"X _q = 2zsm( )[sin( )+ 1cos( )] = 2isin(—)e 22
2n2 2n? 2n? 2n?

which implies that
||

sm( X )<
2n? )|~

n2

ei"’x 1’<2

when |i|2 < 1. Thus F,,(x) — F(x) as m — oo by the dominated convergence theorem, and the
2n

anti-derivative of f is given by

(o]

- J:f(t) dt = (i) Z(ei"’zx -1)

n=1

In order to see that F is unbounded, we only need to look at the modulus of the imaginary part of
F(x), i.e.

0o

imp9=)_(eo(35)-1)=-2) w3

Thus it is enough show that that ) ;7 sinz(i

2n2) is an unbounded function of x. Utilizing the
inequality

for x| < -

sinx >
|sina >

we deduce that for each x fixed, then for n large enough such that % < we have

o [ lel/n] X 0o X
.2 -2
) sin'(5z)= L wn(gp)e ) n(55)
n=1 n=1 n=[VIxl/r
L i TR
> Z 4?2 T m2 Z« nt |
n=[Vlxl/=| n=[Vlxl/=|
Although we know ) 7 4 = 90 , it is still unclear why the sum above is unbounded in term of x

since when [x| gets larger the sum gets smaller. Let’s consider x = k27t with k € N then

|x|2 > 1 4 4 dx_k4_k
= "Z =R hl St

nVerm) "

as k — oo. Thus F(x) is unbounded. O

Some sufficient conditions for functions to be almost-periodic

. (Bohr theorem) We have the following criterion for function to be almost-periodic.

Theorem 3.33 (Bohr). Let f € L®(R) with its classical derivative f’ € AP(R), then f € AP(R).

Proof. Since AP(IR) is a sub-algebra, without loss of generality we can assume f is real-valued.
Note that f is continuous already, thus all we need to do is to show that for given ¢ > 0, there exists
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A = A(g, f) such that any interval of length A contains an e-almost-period of f. Let @ = sup, g f (%)
and g =inf,cR f (x), let x4, xg be real numbers such that

& & - &
f(xa)>a_g; f(x/i)<lg+§; and bzm-

We claim that if 7 is an 0-almost-period of f then f(xg—17) € [ﬁ,ﬂ + %) Indeed we have
flra-0-flg=0)= [ fx-nde= [ s [ (F-- ) d
*p *p *p

Xa

= flr)= Flg)+ [ (=) ) d

B

Since 7 is an 6-almost-period of f’, the last term is bounded by %, thus we deduce that
€ €
f(xa—T)—f(xﬁ—T)>a—[5—§ = f(xﬁ—r)<m+§. (39)
LetL = A(%,f’). ForxeR,letpe (x—xﬁ,x—xﬁ + L) be an g-almost-period of f’. We have

fla=1)=f(x) = (fx =)= flxg=T=p)) +(f (x5 =T~ p) = f (x5 =) + (f (x—p) = f(x)
xXp=p
= flxg——p) f(xﬁ—p)+fﬁ (')~ f(y-1) dy

X

for any v € R. Observe that if we choose 77 = min{ﬁ, %} and 7 to be an 7j-almost-period of f’, which
is independent to x and p, then 7 + p and p are 6-almost-periods of f’, thus from (39) we have

f(xﬁ_T_P):f(xﬁ_P)e[ﬁfﬂJf%) = |f(xﬁ—r—p>—f<xﬁ—p)|<§ (40)
and x-p
| rw-re-n)as| <ty -x-pr < 5y x1=4 (41)

From (40) and (41) we obtain f|(x — ) — f(x)| < ¢ and hence every interval of length A = A(, f’)
contains an e-almost-period of f. O

. For f € AP(R) we say that fis an "almost-periodic pseudo-measure”. We call a pseudo-measure
v € FL™ is "almost-periodic” at a point & € R if there exists a function @ € FL' with ¢ =1 in a
neighborhood of &y such that ¢v is an almost-periodic pseudo-measure. The definition clearly
implies that the set of points where v is almost-periodic is an open set of RR.

Lemma 3.34. v € FL® is almost-periodic at &y if and only if Pv is almost-periodic for all 1 € FL' with
supp ¥ is sufficiently close to &.

Proof. If v is almost-periodic at &, let ¢ € FL! with ¢ = 1 on (&) — ¢, &g + €) such that v = g for
some ¢ € AP(R). Now for ¢ = fwith f e L! and supp  C (& —&,& + €) we have @i = 1 on
(o — & &+ ¢) and thus v = @(Pv) = P(pv) = f/:e\g which is almost-periodic since f * g € AP(IR)
due to f € L'(R) and g € AP(R). The inverse is obvious. O

Corollary 3.35. If v € FL*™ then it is is almost-periodic at every & & supp v.

Proof. If £ ¢ supp v then there exists ¢ > 0 such that ({ —¢,&+¢)Nsupp v = 0. Let ¢ € CP(R)
be a function such that ¢ =1 in a neighborhood of £ and supp ¢ C (£ —¢,& +¢) then pv=0asa
distribution, which belongs to F(AP(RR)). O

Lemma 3.36. Let v € FL™ with supp v is compact and v is almost-periodic at every point of supp v,
then v is almost-periodic.
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Proof. For each & € supp v let ¢ € FL! such that @z = 1 on (£ — ¢, & + &) and @¢v is almost-
periodic. Since supp v is compact, there is finite &5,...,¢&,, and € > 0 such that supp v is covered

by U;"zl(éj - ¢ +Ae). Let ¢; € C°(R) such that supp ¢; C (§; —¢,&; +¢) and Z “1¢; =1. By
lemma 3.34 @;v = f; for f; € AP(R) and thus v = (Z;ﬂzl (p]-)v = ijl Ppjv = ;:1](] which is almost
periodic. 0

We now claim that Bohr theorem 3.33 implies the following criterion.

Theorem 3.37. Let f € L°(IR) such that supp ]?is compact and ]/‘\is almost-periodic at every & € R
except, possibly, at & = 0 then f € AP(IR).

Proof. First we claim that if supp ]?is compact then f € C!(RR) and f’ = 1£f Let ¢ € $(R) be a test

function such that p(&) = 1 in a neighborhood of supp f then f (pf and thus f = @ = f. Since
f is bounded and ¢ € §(IR), we have f = @=f is smooth and in particular f’ = ¢’ * f, therefore

f’(é) = (p’(é)f(é) =iEP(& f = zéf( since @ =1 in a neighborhood of supp f.

Since (?(0) =0, and {¢ € S(R): 0 ¢ supp ¥} is dense in {¢ € FLY(R) : 1(0) = 0}, there exists
{th,} € S(R) such that ¢,, = 0 in a neighborhood of 0 and ||17b\n - (/p\’||5tL1 —> 0 as 1 —> oo, therefore

s f = f oy = [[@n f = @' F |l oo < WFlgreslln = @Ml — O

as n — oo. Now we claim that y,, = ¥, = f is almost-periodic, or equivalently, i, = I:b\nfis almost-
periodic as a pseudo-measure. Since supp ¥, is compact and is supported away from 0, by lemma
3.36 we only need to show that 7, is almost-periodic at every point & # 0 in the support of f.
Let & € supp f with & # 0, since f is almost-periodic at &, there exists ¥ € FL! with ¥ = 1 in a
neighborhood of & such that xf =g for some g € AP(IR). Since
Wn = ?{b\nf = @

therefore by definition we have Ji, is almost-periodic. Thus the pseudo-measure y, € AP(IR) for
all n € N, hence f’ € AP(R) since f’ =lim y,, in L*(IR). Finally Bohr theorem 3.33 concludes that
f € AP(R). O

The point & = 0 in the theorem above plays no specific role. In fact by the same argument we can
show the following.

Lemma 3.38. If v € FL™ is almost-periodic for all £ € (g —¢,Eg+€)\{Ep) then v is also almost-periodic
at &g. In other word, the set of points where p is not almost-periodic has no isolated point.

Proof. Let € C°°( ) with supp 1 C (§9—¢,&9+€) and i = 1 in a neighborhood of &y, we only need
to show that §v is almost-periodic as a pseudo-measure.

* The pseudo-measure v has supp C supp 1,b C (&g —¢€,&y +€), thus v has compact support
and it is almost-periodic for all & & R\supp 3.

* For £ € supp 1/) C(&o—¢€ &p+e)and & = &, since v is almost-periodic at &, there exists ¢ € FL!
suchthatp=1ina nelghborhood of £ and pv =g for some g € AP(R), then @p(v) = P(pv) =
1+ g is almost-periodic, thus v is almost-periodic at & by definition.

Thus v has compact support and is almost-periodic for all & € R\{&). By theorem 3.37 we
conclude that ¥v is almost-periodic as a pseudo-measure. O

Theorem 3.39. Let f € L*(IR) such that supp fis compact and countable, then f € AP(R).

Proof. From lemma 3.38 we see that A = {£ € R : ]?is not almost-periodic at &} then clearly A C

supp f has no isolated point and is countable. It is closed since its complement, the set of points
& such that v is almost-periodic at £ is open. Thus A is a countable perfect set, which has to be
empty. Thus theorem 3.37 concludes that v is almost-periodic as a pseudo-measure. O
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3. Theorem 3.39 can be improved by replacing the condition supp J/‘\is compact by a weaker condi-
tion f € BUC(R).

Theorem 3.40. If f € BUC(RR) such that supp fis countable then f € AP(RR).

Proof. Let K, be the Fejér kernel as usual, then for each A > 0 the L*(IR) function gy = K, * f

satisfies g = IK,\f and thus supp g, C supp XN supp f which is compact and countable. By
theorem 3.39 we have X, » f € AP(IR) for all A > 0. Since AP(IR) is closed in L*(RR), there exists
a sub-sequence A, — oo such that X, *f — g as A, — oo for some g € AP(RR). It is clear that
K,*f — f point-wise in IR as A — oo, which implies ¢ = f and hence f € AP(IR). Indeed it is easy
to see that [|KX) * f — fll=~r) — 0 as A — oo for the full sequence. O

4. In fact theorem 3.37 and Bohr theorem 3.33 are equivalent. Indeed, let f € L*(IR) with its classical
derivative f” € AP(R) we will show that f € AP(IR).

* Assume that ]?has compact support first.

— It is clear that ]’(\’ = iéfas pseudo-measures. In fact if ¢ € §(IR) is a function such that
g=1ina ne1ghborhood of f supp | f then f qof and hence f = ¢ * f is smooth and

=@’ +f, thereforef’— ’f 1<§f

— Now we will show that f is almost-periodic for all £ = 0 in the support of ]7\

Let &y be such a point and 0 & (&) — ¢, &g + €) for some ¢ > 0, we can choose 71 € §(IR) such
that supp 77C (§g—&,& +¢) and =1 on (& - §, &+ 5 )-

Clearly we have & +— %ﬂé) belongs to Céx’(ﬁli), thus in turns we can find x € 8(R) such
that X(&) = 7£77(€)-
We have

SN R =
X =glief)=nf = f=x+f
is almost-periodic as a pseudo-measure.

Thus we have proved that }’\is almost periodic at every & in the compact of fexcept 0. By
theorem 3.37 we obtain f € AP(R).

* Now in the general case, for each A > 0 the L*(R) function g, = X, = f is smooth, bounded
with g} =X, »f” € AP(R). Also g has compact support. Thus by the result above g, € AP(R),
and thus since g, — f everywhere as A — 0 and AP(IR) is closed in L*°(IR) we deduce that
the uniform limit f =lim,_,,, g, also belongs to AP(IR).

4 Kronecker’s theorem

We first establish the equivalence between the following two theorems:

Theorem 4.1 (Kronecker’s theorem). Let Aq,..., A, be real numbers, independent over the rationals. Let
ai,...,a, be real numbers and € > 0. Then there exists a real number x such that

|ei"1x—eia1| <e for all ji=12,...,n
Theorem 4.2. Let Ay,..., A, be real numbers, independent over rationals, Ay = 0, and let ay,ay,...,a, be any

complex numbers. Then
sup |a;|
pl§ o] -5
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Proof of (4.1) implies (4.2). It is obvious that sup g (Y7 ]e”\lx

e >0, if we write aj |u]|e ¢ for j=0,...,n then by theorem (4.1) there exists x € R such that

< Z;'l:o|“j|- For the converse, given

|ghx_g®m§”<g for j=1,...,n

which implies that

n n
Z'“ﬂ <|)_ajehT-e® ) |a]
j=0 j=0 j=0
n
=Y lagle ) - i Zla]
=0
n n
<) Jaglfeer) o) < Zla e o) < f(Z'%']
j=0 j=0
and thus the proof is complete since ¢ is arbitrary. O

Proof of (4.2) implies (4.1). Consider the polynomial 1+ Y "¢ "%i¢'**, by theorem 4.2 for any ¢ > 0 we
P poly 1 y y

can choose x € R such that
n

n+1> 1+Zei(‘5f+"f") >n+1—§.
=1

By a simple argument, each component must be closed to 1, therefore theorem 4.1 follows. O

Now we prove theorem 4.2, first for a simple case.

Theorem 4.3. Let Ay,..., A, be real numbers having the following properties:
(a) Z] 16jAj=0,¢ € {-1,0,1} implies ¢j= Oforallj=1,2,...,n
(b) ijl chj = Ak ¢j € {-1,0,1} implies ¢j= 0 forall j #k.

Then for any complex numbers ay,...,a, we have

n

= 1
iAix
sup E ajeit > 5 |-
x€R =1
. 51 =g,
Proof. Leta; =r;e'/ where r; =|a;| and

n

g(x) = H(l +cos(/\]~x+<§]-)), and  f(x)=) ajeti*= Zr].e"()‘j“éf).

j=1 j=1 j=1

=
=

We have g is a non-negative trigonometric polynomial whose frequencies all have the form } ;¢ (cj /\]-x),
ie,

g(x):1+Z

Sk

Akel(zfesk Cf’\f)x) where Sk is some subset of {1,2,...,n}, Ai = mel(zﬁsk Cfé]).

It is easy to see that if £ # 0, then the mean value of eleX is

. 1 T .
M(e“f") = Tlim TJ e dx =0
—>00 0

59



Therefore, all the terms which contribute to the mean value of g(x) is the one whose frequency is zero,
that is

n
ch,\jzo, cj€{-1,0,1} = ;=0 forall j=12..,n

by (a), which is cannot the case. Thus M(g) = M(|g]) = 1. By the same argument, we have

n n
- pidjx i(Zjesy ¢4
= Za]e’ j ] 1+Z(Ake J€Sk .
[j_l k=1

This is a trigonometric, and its frequency is zero if and only if

n
ch/\j:Ak, cj€{-1,0,1} = ;=0 forall j=k.

Therefore the mean value, which is the constant term in fgis 5 lyn 3 Z" 1 laj|. Finally, we have

j=17j =

1 n n )
M(f9) <IIfll=Mlgh = If liM(g) = 5 ) lajl<sup|) aje'*
2
j=1 xeR j=1
and the proof is complete. The inequality we used above is obvious since

M(fg)= lim —f flx dx<||f||L°°( lim —f gl |dx)—||f||LmM<|g|>

T—oo T
O
This theorem is a special case of the following theorem.
Theorem 4.4. Let Aq,..., A, be real numbers having the following properties:
(a) Z?zl ¢jAj=0,cj€Z,cj| <N implies cj =0 forall j =1,2,...,n
(b) Z] 167 = A ¢ eZ,chl < N implies ¢j= 0 forall j #k.
Then for any complex numbers ay,...,a, we have
i L \y
il:ﬂ}: ;aje > (1 - m);lajl.
Proof. It is similar to the proof of the last one, let aj = r]-eigf, we define
= Y K (/\-x+5-) where Ky (x) = i(l— 1K eikx)
j; NAAETE N L\ N+1
is the discrete Fejer’s kernel and the proof follows in the same manner. O

Finally, in theorem 4.2, since Ay, ..., A, are linearly independent over rationals, the conditions in our last
theorem are satisfied for all N € N, thus

n n
1
supld_aje™| > (1= 577 )3
=

x€R i1

for all N € IN. Letting N — oo we obtain theorem 4.2 and hence 4.1.

60



Some problems

1.5. Let f € L'(T) and m be a positive integer and write fimy(t) = f(mt), we have

— ]"\(%) if m|n,
f(m)(n)_{ 0 if m [n.

Proof. We have

. 1 27 ,
j— —1in
fim)(n) = P . f(mt dt
1 2mm -
=— (s)e™'m* ds
2mm J,
1 M=l k)
=— f(s)e'm® ds
2mrt — LZH
1 m-1 ~2n o m—1 ) ” 1 ok 27 .
- L (u+ Tcd — = L | “imt dyl.
2mm ; , ! L (271 fluje ”)
Note that
LN itokn _ 1—ein2m 1 ik _
Z; m 0if m [n, and ZZ’ m 1if m|n
The proof is complete from this formula. O
2.8. (Fejer’s lemma) If f € L!(T) and g € L®(T) then
1 271 .
lim —— | f(t)g(nt) dt = F(0)F0).

Proof. Let P=Y}"  aze ¥ be a trigonometric polynomial with ||f - Pllp1(r) < &, we have

—int —
% . P(t)g(n)(t) dt = E ak(EL 8m)e m dt) = Z akg(y,)(k)

k=—m k=-m

where g,,)(t) = g(nt). Recall that for n # 0 then g, (k) = :g\(%) if n|k and g,y (k) = 0 otherwise, if we choose
|n] > m then g, (k) = 0 for all |k| < m, hence

1 271

= P(t)g(n(t) dt = aog(0).

Now since |f(0) —-P(0)| = |f(0) —ag| <||f = Pllgi () < €, we obtain

1 2n 1 27 .
5 | f(Bg(nt)dt— FlO)g10)| < ﬁJ. |f (£) = P(t)lg(nt) dit +lag — £ (0)|.[g10)] < lIgllre=e + lIgllL1 ()€
Here we used the fact that L>(T) c L}(T). O
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